
KARSTEN SILZ, FEBRUARY 16, 2023

LJC LIVE FEBRUARY 2023

WHEN IS NATIVE JAVA
WITH GRAALVM
WORTHWHILE FOR ME?

WHEN IS NATIVE JAVA WITH
GRAALVM WORTHWHILE FOR ME?

75% OF YOU:

NOT NOW

😁

TALK SUMMARY

NATIVE JAVA:

SPEND DEVELOPER TIME TO

SAVE OPERATIONAL COSTS

👍

FASTER STARTUP

LESS MEMORY

SMALLER FILES

BETTER SECURITY

STARTUP PEAK

248
33

682

119

SPRING BOOT 3: JIT VS. NATIVE (LOWER = BETTER)
MEMORY 

IN MB

STARTUP
17

621

TIME 
IN MS

3.6X

2.8X

37X
JIT Native

112.5

40.6
12.6

SIZE 
IN MB

3.1X

125.1

SWEET SPOT:
MICROSERVICES ON K8S –

MORE PODS PER NODE

👎

SOMETIMES
DOESN’T WORK

OFTEN MAKES NO
BUSINESS SENSE

HARDER TO LEARN & USE,

LOW JOB DEMAND

WHY AM I AN EXPERT?

I GOT DATA TO BACK UP MY CLAIMS

EDITOR OF 6-PART INFOQ ARTICLE
SERIES ON NATIVE JAVA

JAVA EXPERTS HELPED ME

EVALUATE & RECOMMEND
TECHNOLOGIES FOR 20 YEARS

BETTER

PROJECTS

FASTER

SLIDES

ADDITIONAL INFORMATION

SAMPLE CODE REPOS

BPF.LI/LAD

AGENDA PROBLEM? AND WHY NOW?

NATIVE JAVA SOLUTION

JIT JAVA SOLUTION

WHEN WORTHWHILE?

PROBLEM? AND WHY
NOW?

"THE LONG-TERM PAIN POINTS OF JAVA’S SLOW
STARTUP TIME, SLOW TIME TO PEAK
PERFORMANCE, AND LARGE FOOTPRINT"

JAVA LANGUAGE ARCHITECT MARK REINHOLD,

ORACLE, APRIL 2020

SLOW STARTUP,

SLOW TIME TO PEAK

PERFORMANCE,

LARGE FOOTPRINT

WHY SLOW?

JAVA:

RUNTIME

1
LOAD

VERIFI-

CATION

2 3 4 5 6 7 8 9 10

LOAD
CLASSES

START

INITIALI-
ZERS

APP

START

C1

COMPILATION

PROFILING

C2

COMPILATION

FULL

SPEED

10 STEPS =

A LOT

C1 + C2 COMPILATION:
HOTSPOT JIT COMPILER -

ALSO USES MEMORY

WHY CLASS FILES & 
JIT COMPILER?

MISSION &
INCENTIVES

JAVA THEN (E.G., 2010)
MISSION: RUN EVERYWHERE

PLATFORM-INDEPENDENT BYTE
CODE IN CLASS FILES

INCENTIVE: SELL TO ENTERPRISES

OPTIMIZE FOR LONG-RUNNING
PROCESSES & LARGE HEAPS
(JAVA EE APP SERVERS)

WHAT CHANGED?

🤔

THE CLOUD!

SOMEBODY ELSE
RUNS MY SERVERS…

…AND I MAY PAY BY
RESOURCE USAGE!

JAVA NOW
MISSION: RUN EVERYWHERE

PLATFORM-INDEPENDENT BYTE
CODE IN CLASS FILES

MISSION: RUN IN LINUX CONTAINERS

NATIVE EXECUTABLES ARE BETTER

INCENTIVE: RUN IN CLOUD

PAY LESS FOR LOWER MEMORY & CPU
USAGE AND SMALLER FILE SIZES

INCENTIVE: SELL TO ENTERPRISES

OPTIMIZE FOR LONG-RUNNING
PROCESSES & LARGE HEAPS
(JAVA EE APP SERVERS)

JAVA APPLICATIONS: HOW
MANY CPU CORES? 

(NEW RELIC, APRIL 2022)

OUTSIDE: 58% >=4 CORES

IN: 62% 1-2 CORES,

74% 1-4 CORE

JAVA APPLICATIONS: HOW
MUCH MEMORY? 

(NEW RELIC, APRIL 2022)

OUTSIDE: 47% > 2 GB

IN: 73% <= 2 GB

JAVA APPLICATIONS IN
CONTAINERS:

FEWER CPU CORES, 
LESS MEMORY TODAY

SECTION SUMMARY

JAVA HAS…

SLOW STARTUP,

SLOW TIME TO PEAK

PERFORMANCE,

LARGE FOOTPRINT

…BECAUSE IT
WAS TO RUN…

LONG-RUNNING PRO-
CESSES WITH LARGE
HEAPS EVERYWHERE

THAT IS MORE
EXPENSIVE 

IN THE CLOUD

AGENDA PROBLEM? AND WHY NOW?

NATIVE JAVA SOLUTION

JIT JAVA SOLUTION

WHEN WORTHWHILE?

NATIVE JAVA SOLUTION

GRAALVM

JDK

OPENJDK WITH GRAALVM
JAVA COMPILERS
(WRITTEN IN JAVA),
REPLACES HOTSPOT JIT
COMPILER (C++)

NATIVE IMAGE

AHEAD-OF-TIME (AOT)
JAVA COMPILER FOR
NATIVE EXECUTABLES –
THINK C++ COMPILER

TRUFFLE

RUNS OTHER LANGUAGES
(JAVASCRIPT, PYTHON,
…)

FASTER STARTUP

LESS MEMORY

SMALLER FILES

BETTER SECURITY

HOW CAN NATIVE 
IMAGE DO THIS?

THROW UNUSED
STUFF AWAY & DO

MORE AT BUILD TIME

NATIVE JAVA:

RUNTIME

1

LOAD SOME INITIALIZERS

2

FULL SPEED

3

3 STEPS =

VERY QUICK

JIT JAVA:

RUNTIME

1
LOAD

VERIFI-

CATION

2 3 4 5 6 7 8 9 10

LOAD
CLASSES

START

INITIALI-
ZERS

APP

START

C1

COMPILATION

PROFILING

C2

COMPILATION

FULL

SPEED

😁

WHAT’S THE
CATCH?

WE MUST USE
THE CWA

CWA?

CZECH WRESTLING
ASSOCIATION?

CAT WRITING
ASSOCIATION?

CLOSED WORLD
ASSUMPTION!

CWA= 
CONSTRAINT

😒

CLOSED-WORLD ASSUMPTION: AT BUILD TIME

ALL CODE KNOWN

OUR APPLICATION, THE
FRAMEWORK & THE JDK

INCLUDE ALL RESOURCES

ALL PROPERTY FILES &
RESOURCE BUNDLES WE
WANT TO LOAD

WHY IS THAT A
CONSTRAINT?

NATIVE JAVA CONSTRAINTS

JAVA FEATURES IMPOSSIBLE

CONSTRUCT NEW CLASSES &
METHODS AT RUNTIME

LOAD ARBITRARY BYTECODE

SOME "RUNTIME LINKING &
VISIBILITY" SCENARIOS

MORE CUMBERSOME

ENSURE ALL CLASSES
(ESPECIALLY IN REFLECTION) ARE
INCLUDED

ENSURE ALL RESOURCES ARE
INCLUDED

NO NATIVE
MINECRAFT!

STILL THERE

REFLECTION & CLASS LOADING

YES, POSSIBLE IN NATIVE JAVA…

…BUT CONFIGURATION REQUIRED
TO INCLUDE CLASSES

VIRTUAL MACHINE

SUBSTRATE VM: GARBAGE
COLLECTION, THREAD MANAGEMENT

NO JIT COMPILER!

HOW DOES NATIVE
IMAGE WORK?

REGULAR JAVA
COMPILER

1

LEXICAL
ANALYSIS

PARSING

2

SEMANTIC
ANALYSIS

3

OPTIMIZATION

4 5

BYTECODE
GENER.

5 STEPS:

OK

NATIVE IMAGE: 
STARTS WITH BYTECODE

1 2 3 4 5 6 7
HINTS

POINT-TO-POINT
ANALYSIS

BUILD-TIME

INITIALIZATION

HEAP
SNAPSHOTTING

LOOP TO

2)

OPTIMIZATION

IMAGE
GENER.

NORMAL COMPILATION 
+ 7 STEPS:

SLOOOW

HOW

SLOW?

MY DEMO MICROSERVICE

WHAT

CONVERTS IMAGES IN CURRENT
DIRECTORY TO ONE-PAGE PDFS

USES ITEXT PDF LIBRARY

BENCHMARK: 80 PNG, EACH
ABOUT 26.5 MB, 2.1 GB IN TOTAL

HOW

TWICE: SPRING BOOT 3 & QUARKUS

BOTH USE SAME CONVERTER CLASS

REPO LINKS ON TALK PAGE

LOWER = BETTER
IN ALL CHARTS

SPRING BOOT VS. QUARKUS: BUILD TIME (IN SECONDS)

JIT Native

40.4

2.9

42.1

1.7

1.04X

0.6X

NATIVE IMAGE BUILD TIME:

25X OF JIT JAVA WITH

SPRING BOOT!

😒

IT ISN’T AS BAD
AS IT LOOKS

NATIVE JAVA DEVELOPMENT

MOST OF THE TIME

DEVELOPERS CODE & DEBUG
WITH JIT JAVA IN IDE

CI/CD PIPELINE BUILDS NATIVE
JAVA EXECUTABLES

SOMETIMES

DEVELOPERS BUILD LOCALLY
BEFORE „BIG MERGE“

BUT DEBUGGING NATIVE PROBABLY
REQUIRES NATIVE BUILDS!

MORE ON NATIVE IMAGE COMPILER

TOOLS

I USE GRAALVM JAVA SDK FOR
BUILD

NATIVE IMAGE IS AN ADDITIONAL
DOWNLOAD THEN

NO CROSS-COMPILATION

ONLY BUILDS NATIVE EXECUTABLE
FOR HOST PLATFORM (E.G., FOR
WINDOWS ON WINDOWS)

WINDOWS & MAC: USE DOCKER
LINUX IMAGE TO BUILD FOR LINUX

ARE YOU OK IF YOUR APP
DOESN’T DO CLASS

LOADING OR REFLECTION?

NOPE

DEPENDENCIES…

…ARE LIKELY REASON
FOR NATIVE JAVA TO

BREAK

HOW DEPENDENCIES BREAK NATIVE JAVA

REFLECTION

IF CLASS/METHOD/FIELD ONLY USED VIA
REFLECTION, NATIVE IMAGE REMOVES IT

BREAKS AT RUNTIME - MAYBE AFTER
DAYS!

FIX: MARK IT FOR INCLUSION

BUILD-TIME INITIALIZATION

SOME CLASS INITIALIZATION BREAKS
AT BUILD TIME

NATIVE IMAGE DEFAULTS TO
INITIALIZATION AT RUNTIME – BUT
QUARKUS TO BUILD TIME

HOW TO FIX DEPENDENCIES?

YOU

WAIT FOR FIXED DEPENDENCY

CONFIGURATION HINTS FOR
GRAALVM NATIVE IMAGE

REPLACE DEPENDENCIES

ECOSYSTEM

"REACHABILITY REPOSITORY" ON
GITHUB COLLECTS CONFIGURATION
HINTS FROM COMMUNITY

FRAMEWORK-SPECIFIC
CONFIGURATION FEATURES

HOW THIS BREAKS -
AND HOW TO FIX IT

return Response.ok(

 jsonParser.fromJson(

 jsonInput,

 Person.class)

).build();

QUARKUS: BREAKS

BREAKS IF PERSON CLASS ISN’T USED ANYWHERE ELSE!

RETURN PERSON IN
HTTP RESPONSE

[

 {

 "name" : "com.acme.Person",

 "allDeclaredConstructors" : true,

 "allPublicConstructors" : true,

 "allDeclaredMethods" : true,

 "allPublicMethods" : true,

 "allDeclaredFields" : true,

 "allPublicFields" : true

 }

]

QUARKUS: FIX

NATIVE IMAGE CONFIG FILE REFLECTION-CONFIG.JSON

SPRING BOOT: BREAKS

ITERATE OVER CUSTOMER LIST
AND CALL TOSTRING()

var result = objectMapper

 .readValue(json,

 new TypeReference

 <List<Customer>>() {}

);

result.forEach(

 System.out::println

);

BREAKS IF CUSTOMER CLASS ISN’T USED ANYWHERE ELSE!

@TypeHint(

 types = Customer.class,

 typeNames = "com.acme.Customer")

@SpringBootApplication

public class Application {

SPRING BOOT: OTHER FIXES

METHOD CALLS

ANNOTATION

@Override

public void registerHints(

 RuntimeHints hints, ClassLoader loader) {

 hints.reflection().registerType(Customer.class,

 MemberCategory.values());

USE A
FRAMEWORK

FRAMEWORKS WITH GRAALVM PRODUCTION SUPPORT

WHAT FRAMEWORKS DO

CONFIGURE NATIVE IMAGE & LIBRARIES

SHIP WITH NATIVE-READY LIBRARIES

MAY HAVE ADDITIONAL FEATURES (LIKE
HOT CODE RELOAD WITH QUARKUS)

WHICH FRAMEWORKS?

NEW: QUARKUS & MICRONAUT

– DON’T USE HELIDON, NOBODY DOES

OLD: SPRING BOOT 3.0 (NOV 2022)

JAKARTA EE: NO

SPRING BOOT 3 
VS. QUARKUS

JIT Native

22

80

33

119

SPRING BOOT VS. QUARKUS: MEMORY (MB)
STARTUP

1.5X

1.5X

JIT Native

245

918

248

682

PEAK0.7X

1X

JIT Native
17

195
17

621

SPRING BOOT VS. QUARKUS: STARTUP TIME (MS)

3.2X
1X

JIT SB JIT Q Native SB Native Q

112.5112.5

41.540.6
6.712.6

SPRING BOOT VS. QUARKUS: FILE SIZE (MB)
1.05X

0.97X

125.1 119.2

HARDER TO LEARN & USE,

LOW JOB DEMAND

HERE’S THE DATA

JOB DEMAND: COUNT
MENTIONS IN JOB ADS IN 59
COUNTRIES AT INDEED.COM

http://indeed.Com

NEW FRAMEWORK SHARE
GROWS OCT 2021 – DEC 2022:

2.5% => 5.9%

Micronaut
1.54%

Quarkus
2.92%

DropWizard
1.05%

Jakarta EE
7.46%

Spring Boot
87.02%

UK: 15 FEB 2023

NEW FRAMEWORK
SHARE: 4.5%

ZERO MENTIONS OF
HELIDON

NOT ALL NEW FRAMEWORK
USERS DEPLOY NATIVE, BUT

SOME SPRING BOOT USERS DO

MY NATIVE JAVA 
JOB DEMAND ESTIMATE:

2/3 OF NEW + 10% OF SPRING BOOT

= 4% + 8% = 12%

GOOGLE SEARCHES
= INITIAL INTEREST

ALL TIME

Jakarta EE: 2
Spring Boot: 35

Micronaut: <1
Quarkus: 2

Jun 2004 

Nov 2022 

Dec 2022

2

Nov 2022 

NEW FRAMEWORKS,
LAST 3 YEARS

Micronaut: 25
Quarkus: 82

Feb 2022

19

Feb 2022

100

Aug 2022 

Helidon: 12

NEW FRAMEWORK
INTEREST:

<10% OF SPRING BOOT

QUESTIONS AT STACK
OVERFLOW =
ENGAGEMENT

Quarkus: 0.07%

Spring Boot: 1.38%

Jakarta EE: 0.03%

0.09%

1.47%Spring: 0.89%

1.2%

0.36%

NEW FRAMEWORK
QUESTIONS:

~7% OF SPRING BOOT

JOB DEMAND FOR NATIVE
JAVA INCREASES BUT IS

STILL LOW

NEW FRAMEWORKS: INITIAL
INTEREST & ENGAGEMENT

PLATEAUED IN 2022

PEAK
PERFORMANCE?

WORSE THAN JIT
⁃ UNLESS YOU PAY

JIT VS. NATIVE: CONVERSION TIME

Spring Boot 3.0 Quarkus

75.675.9 69.170.9

TIME 
IN S

-7% -9%

WHY WORSE?

PEAK PERFORMANCE

GRAALVM COMMUNITY EDITION

SERIAL GARBAGE COLLECTOR: STOP
THE WORLD, SINGLE-THREADED

STANDARD MODE FOR NATIVE IMAGE

GRAALVM ENTERPRISE EDITION: £££

G1 GARBAGE COLLECTOR: DOESN’T
STOP THE WORLD, MULTI-THREADED

PROFILE-GUIDED OPTIMIZATION
(PGO): AGENT PROFILES AT RUNTIME,
NATIVE IMAGE USES THAT

1
LOAD

VERIFI-

CATION

2 3 4 5 6 7 8 9 10

LOAD
CLASSES

START

INITIALI-
ZERS

APP

START

C1

COMPILATION

PROFILING

C2

COMPILATION

FULL

SPEED

GRAALVM
COMMUNITY EDITION

GRAALVM
ENTERPRISE EDITION

MORE
CONSTRAINTS

DEBUGGING IS VERY INCONVENIENT

ONLY WHEN RUN IN LINUX

MAC/WINDOWS: RUN NATIVE IMAGE IN
DOCKER LINUX TO BUILD LINUX
EXECUTABLE & DOCKER IMAGE

THAT TAKES VEEERY LONG – AND FOR
EVERY CHANGE!

DEBUGGING IN IDE

EXPERIMENTAL INTELLIJ SUPPORT
SINCE JULY 2022

VS CODE SUPPORT (STABLE?)

WORSE OBSERVABILITY

INCOMPLETE STANDARD SUPPORT

JXM NOT SUPPORTED AT ALL BUT
UNDER CONSTRUCTION

JAVA FLIGHT RECORDER ONLY
PARTIALLY SUPPORTED

POPULAR LIBRARIES DON’T WORK

MANY USE JAVA AGENTS & RUNTIME
INSTRUMENTATION – BOTH DON’T
WORK IN NATIVE JAVA

QUARKUS & SPRING BOOT 3 HAVE
THEIR OWN OBSERVABILITY SOLUTION

ECOSYSTEM IMMATURITY

DEMO CALCULATED THUMBNAILS FIRST

NATIVE BUILD FAILED IN QUARKUS
BECAUSE THUMBNAIL LIBRARY
CLASSES CAN’T BE INITIALIZED AT
BUILD TIME (QUARKUS DEFAULT)

FIXED YESTERDAY WITH QUARKUS HINT

MISSING GRAALVM SUPPORT

DEMO COMPILED IN SPRING BOOT…

…BUT LIBRARY USES AWT – DOESN’T
WORK NATIVELY ON MAC, SO: PDFS

RELATED: SPRING WEB SERVICES DON’T
WORK OUT OF THE BOX (ISSUE WITH FIX)

WHY MORE
SECURE?

NATIVE JAVA SECURITY

SMALLER ATTACK SURFACE

REMOVING UNUSED CODE ALSO
REMOVES POTENTIAL SECURITY HOLES
IN DEPENDENCIES

NO ARBITRARY CODE EXECUTION

MANY JAVA ATTACKS, LIKE
LOG4SHELL, GET JAVA TO LOAD AND
RUN "ATTACK CODE"

CWA PREVENTS THAT: ONLY RUNS
CODE KNOWN AT BUILD TIME

SECTION SUMMARY

NATIVE IMAGE THROWS
UNUSED STUFF AWAY &

DOES MORE AT BUILD TIME

FASTER STARTUP

LESS MEMORY

SMALLER FILES

BETTER SECURITY

CWA CONSTRAINT
MAKES SOME JAVA

FEATURES IMPOSSIBLE

DEPENDENCIES MAY
BREAK NATIVE JAVA

MUCH LONGER BUILD TIMES,
WORSE PEAK PERFOR-

MANCE IN FREE VERSION

ALSO WORSE:
DEBUGGING, MONITORING,

ECOSYSTEM

USE A FRAMEWORK:
SPRING BOOT 3.0,

QUARKUS, OR MICRONAUT

NATIVE JAVA SOLUTION

AGENDA PROBLEM? AND WHY NOW?

NATIVE JAVA SOLUTION

JIT JAVA SOLUTION

WHEN WORTHWHILE?

JIT JAVA SOLUTION

FASTER STARTUP & LESS
MEMORY WITHOUT
GRAALVM & CWA?

APPLICATION CLASS
DATA SHARING

JIT JAVA:

RUNTIME

1
LOAD

VERIFI-

CATION

2 3 4 5 6 7 8 9 10

LOAD
CLASSES

START

INITIALI-
ZERS

APP

START

C1

COMPILATION

PROFILING

C2

COMPILATION

FULL

SPEED

APPLICATION CLASS
DATA SHARING

APPLICATION CLASS DATA SHARING

WHAT?

LOWER STARTUP TIME: STORE INTERNAL
JVM CLASS DATA STRUCTURE AS FILE &
LOAD IT ON NEXT RUNS

SAVES MAYBE 10-20% OF STARTUP TIME

HOW?

ENABLED WITH OPENJDK COMMAND
LINE PARAMETERS - READY TODAY!

SOME FRAMEWORKS (LIKE QUARKUS)
SUPPORT IT, TOO, FOR BIGGER IMPACT

CRAC

NOT THAT
CRACK

OPENJDK PROJECT CRAC:

COORDINATED RESTORE AT

CHECKPOINT

1
LOAD

VERIFI-

CATION

2 3 4 5 6 7 8 9 10

LOAD
CLASSES

START

INITIALI-
ZERS

APP

START

C1

COMPILATION

PROFILING

C2

COMPILATION

FULL

SPEED

CRAC

PROJECT CRAC

WHAT?

LOWER STARTUP TIME: STORE JAVA HEAP
WITH "INITIALIZATION RESULTS" AS FILE
THE FIRST TIME & LOAD IT ON NEXT RUNS

NEEDS FRAMEWORK SUPPORT: FILES &
NETWORK CONNECTIONS CLOSED BEFORE
SAVING & REOPENED AFTER LOADING

HOW?

LINUX ONLY: USES CRIU OS FEATURE

APP DETERMINES WHEN SAVE & LOAD

ONLY MICRONAUT PRODUCTION
SUPPORTS, AMAZON LAMBDA "SNAPSTART
FOR JAVA" USES IT UNDER THE HOOD

CRAC VS. NATIVE IMAGE HEAP SNAPSHOTTING

ADVANTAGE CRAC

RUN LESS CODE AT RUNTIME: RESULTS
FROM ALL INITIALIZERS (NATIVE IMAGE
DEFAULTS TO RUNTIME INITIALIZATION) +
DYNAMIC INSTANCES

APPLICATION DETERMINES WHEN TO TAKE
SNAPSHOT – STORE EVEN MORE STATE

DISADVANTAGE CRAC

ONLY MICRONAUT SUPPORTS IT

HEAP IS SEPARATE FILE (NATIVE
IMAGE: PART OF EXECUTABLE)

OPENJDK PROJECT
LEYDEN

PROJECT LEYDEN

FIRST PHASE

GOAL: STANDARDIZE NATIVE JAVA

STARTED JUNE 2020 BUT
NOTHING HAPPENED FOR 2 YEARS

SECOND PHASE

GOALS: IMPROVE JIT JAVA &
STANDARDIZE NATIVE JAVA

STARTED AGAIN IN MAY 2022

IN LTS RELEASE: JAVA 25 IN
SEPTEMBER 2025?

SECTION SUMMARY

SOME LOWER JIT JAVA STARTUP
TIME WITH APPLICATION CLASS

DATA SHARING NOW

HOPEFULLY A LOT LESS
STARTUP TIME WITH

CRAC IN FUTURE

WAIT & SEE WHAT
LEDEN BRINGS

JIT JAVA SOLUTION

AGENDA PROBLEM? AND WHY NOW?

NATIVE JAVA SOLUTION

JIT JAVA SOLUTION

WHEN WORTHWHILE?

WHEN WORTHWHILE?

NATIVE JAVA:

SPEND DEVELOPER TIME TO

SAVE OPERATIONAL COSTS

MY FIVE-STEP 
PLAN TO INTRODUCE

NATIVE JAVA

EVERY STEP IS A "GO/
NO GO" DECISION

1. DOES YOUR BOSS CARE?

2. IS THERE AN ROI?

3. WOULD IT WORK?

4. TRY SMALL

5. GO BIG

DOES YOUR BOSS
CARE?

DOES YOU BOSS CARE?

YOUR JOB

CREATE BUSINESS VALUE -
FEATURES, BUG FIXES

BUSINESS VALUE NOT
NECESSARILY EQUALS SAVING
COSTS

YOUR BOSS MAY NOT CARE BECAUSE…

FEATURES ARE MORE IMPORTANT NOW

DOESN’T WANT YOU TO DO THE WORK
AND OPS TO GET THE CREDIT

DEPARTMENTS PAY IT BUDGET NO
MATTER WHAT

1. DOES YOUR BOSS CARE?

2. IS THERE AN ROI?

3. WOULD IT WORK?

4. TRY SMALL

5. GO BIG

IS THERE AN ROI?

"RETURN ON INVESTMENT"–
SHOULD BE POSITIVE

AFTER 1-3 YEARS

NATIVE JAVA:

SPEND DEVELOPER TIME TO

SAVE OPERATIONAL COSTS

STARTUP

33

119

NATIVE SAVINGS: MEMORY
MICRO-

SERVICE

73%

STARTUP

1,4501,650

MONOLITH 12%

IF YOU PAY FOR SERVER WITH
2 GB RAM, WHAT’S 200 MB
MORE HEAP SPACE TO YOU?

STARTUP

0.017

0.621

NATIVE SAVINGS: STARTUP TIME (IN SECONDS)
MICRO-

SERVICE

97%

STARTUP

20

60

MONOLITH

67%

WHAT’S 40 SECONDS LESS
STARTUP TIME EVERY TWO

WEEKS TO YOU?

SWEET SPOT: MICROSERVICES IN KUBERNETES

SAVINGS

INFOQ ARTICLE: SAVED 50% OF
KUBERNETES COST BECAUSE
MORE PODS IN ONE NODE

IS "50% OF KUBERNETES COST"
10K TO YOU - OR 105M?

CAUTION

WORKS BECAUSE JAVA MICROSERVICES
USUALLY WAIT FOR DATABASE AND API
CALLS TO COMPLETE

MAY NOT WORK IF YOUR MICROSERVICES
ARE CPU-BOUND!

WHAT ARE THE COSTS
OF NATIVE JAVA?

COSTS OF NATIVE JAVA

ONE-TIME

NEW FRAMEWORK (QUARKUS) OR
UPGRADE (SPRING BOOT 3: JAVA 17,
JAKARTA EE 9) - DEPENDENCIES!

TRAIN HOW MANY DEVELOPERS?

DEVELOPER MACHINES, BUILD
PIPELINE, CI/CD, OBSERVABILITY, …

ON-GOING

MORE TIME ON TROUBLESHOOTING:
LESS ANSWERS OUT THERE,
PROBABLY LESS OBSERVABILITY

DEBUGGING PRODUCTION IS
HARDER

SMALLER APP SIZE,

SHORTER APP RUNS 
= HIGHER SAVINGS

YOU STILL ESTIMATE THE
ROI – YOU DON’T KNOW

1. DOES YOUR BOSS CARE?

2. IS THERE AN ROI?

3. WOULD IT WORK?

4. TRY SMALL

5. GO BIG

WOULD IT
WORK?

WOULD IT WORK?

WHAT YOU KNOW

DOES YOUR APPLICATION DO
"FORBIDDEN THINGS" (E.G.,
CLASS LOADING)?

DOES YOUR OBSERVABILITY
WORK IN NATIVE JAVA?

WHAT YOU DON’T KNOW

WILL MY DEPENDENCIES WORK
IN JAVA?

1. DOES YOUR BOSS CARE?

2. IS THERE AN ROI?

3. WOULD IT WORK?

4. TRY SMALL

5. GO BIG

TRY SMALL

TRY SMALL

GOT MICROSERVICES

REWRITE ONE/WRITE NEW ONE
WITH NATIVE JAVA

SMALL TEAM, LOW COSTS

IS YOUR ROI CALCULATION RIGHT?

GOT MONOLITH

BREAK OFF ONE SMALL PIECE AS
MICROSERVICE

THEN: SEE LEFT

1. DOES YOUR BOSS CARE?

2. IS THERE AN ROI?

3. WOULD IT WORK?

4. TRY SMALL

5. GO BIG

GO BIG

GO BIG

ROLL-OUT

CAREFULLY EXPAND NATIVE JAVA FOOTPRINT

ADJUST ALONG THE WAY

DON’T MOVE APPLICATIONS TO NATIVE JAVA IF
IT DOESN’T MAKE BUSINESS SENSE

1. DOES YOUR BOSS CARE?

2. IS THERE AN ROI?

3. WOULD IT WORK?

4. TRY SMALL

5. GO BIG

WHEN WORTHWHILE?

AGENDA PROBLEM? AND WHY NOW?

NATIVE JAVA SOLUTION

JIT JAVA SOLUTION

WHEN WORTHWHILE?

TALK SUMMARY

NATIVE JAVA:

SPEND DEVELOPER TIME TO

SAVE OPERATIONAL COSTS

👍

FASTER STARTUP

LESS MEMORY

SMALLER FILES

BETTER SECURITY

STARTUP PEAK

248
33

682

119

SPRING BOOT 3: JIT VS. NATIVE (LOWER = BETTER)
MEMORY 

IN MB

STARTUP
17

621

TIME 
IN MS

3.6X

2.8X

37X
JIT Native

112.5

40.6
12.6

SIZE 
IN MB

3.1X

125.1

SWEET SPOT:
MICROSERVICES ON K8S –

MORE PODS PER NODE

👎

SOMETIMES
DOESN’T WORK

OFTEN MAKES NO
BUSINESS SENSE

HARDER TO LEARN & USE,

LOW JOB DEMAND

QUARKUS TEAM, RED HAT

BEN EVANS

DIMITRIS ANDREADIS

FOLVOS ZAKKAK

GALDER ZAMARRENO

HOLLY CUMMINS

MAX RYDAHL ANDERSEN

MICHAEL KAM BARBACEC

PATRICK BAUMGARTNER

SANNE GRINOVERO

OPENJ9 TEAM, RED HAT

DAN HEITINGA

GRAALVM TEAM, ORACLE

ALINA YURENKO

AZUL

SIMON RITTER

SLIDES

ADDITIONAL INFORMATION

SAMPLE CODE REPOS

BPF.LI/LAD

