
KARSTEN SILZ
4 OCTOBER 2023

WHEN IS NATIVE JAVA
WITH GRAALVM
WORTHWHILE FOR ME?

https://bpf.li/lab

FOR MOST OF YOU:
NOT NOW

SUMMARY

JAVA MORE EXPENSIVE:
TUNED FOR LONG-LIVED

BIG APPLICATIONS

JAVA’S NEW
COMPETITION:

JAVASCRIPT & PYTHON

JAVA CHEAPER:
CDS, CRAC123,
GRAALVM45678

FASTER START
LESS MEMORY

SMALLER FILES
BETTER SECURITY

START SB 2 – QUARKUS
TIME (MS): 589 – 10.4
RAM (MB): 107 – 5.6

MONOLITH
 MICROSERVICES ✓

SERVERLESS
✓
❌

❌

WHO MADE ME
THE EXPERT?

EDITOR OF ARTICLE SERIES & AUTHOR
OF MULTIPLE NEWS ITEMS ON

DATA AS EVIDENCE

JAVA EXPERTS HELPED

NEUTRAL: NOT IN DEVELOPER
RELATIONS, NOT SELLING ANYTHING

BETTER
PROJECTS

FASTER

BPF.LI/LAB

SLIDES &
MORE

HTTPS://

https://bpf.li/lab
https://bpf.li/lab
https://bpf.li/lab

AGENDA PROBLEM?
CDS & CRAC

GRAALVM

WORTH IT WHEN?

PROBLEM?

"THE LONG-TERM PAIN POINTS OF JAVA’S
SLOW STARTUP TIME, SLOW TIME TO PEAK
PERFORMANCE, AND LARGE FOOTPRINT"

JAVA LANGUAGE ARCHITECT
MARK REINHOLD, ORACLE, APRIL 2020

SLOW STARTUP,
SLOW TIME TO PEAK

PERFORMANCE,
LARGE FOOTPRINT

FOR 10+ YEARS

WHY?

JAVA UNDER THE HOOD

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

BYTE-
CODE

CLASS
LIST

INIT JDK &
FRAMEWORK

INIT
APP

MACHINE
CODE

JAVA COMPILER

JVM JIT COMPILER

…

SLOW STARTUP,
SLOW TIME TO PEAK

PERFORMANCE,
LARGE FOOTPRINT

SLOW TIME TO PEAK

PERFORMANCE,
LARGE FOOTPRINT

SLOW STARTUP,

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

CLASS
LIST

INIT JDK &
FRAMEWORK

INIT
APP

JAVA COMPILER

JVM

RUNS EACH TIME,
SAME RESULT:

MANY JAVA OBJECTS

BYTE-
CODE

MACHINE
CODE

JIT COMPILER

…

SLOW STARTUP,

LARGE FOOTPRINT

SLOW TIME TO PEAK
PERFORMANCE,

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

CLASS
LIST

INIT JDK &
FRAMEWORK

INIT
APP

JAVA COMPILER

JVM

PROFILING,
FAST COMPILATION (C1),

PROFILING,
OPTIMIZED COMPILATION (C2)

BYTE-
CODE

MACHINE
CODE

JIT COMPILER

…

SLOW STARTUP,
SLOW TIME TO PEAK

PERFORMANCE,

LARGE FOOTPRINT

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

CLASS
LIST

INIT JDK &
FRAMEWORK

INIT
APP

JAVA COMPILER

JVM

PROFILER & COMPILER
BUNDLED WITH OUR APP

BYTE-
CODE

MACHINE
CODE

JIT COMPILER

…

SLOW STARTUP,
SLOW TIME TO PEAK

PERFORMANCE,
LARGE FOOTPRINT

WORKS FOR
LONG-LIVED APPS

WITH MUCH MEMORY

= JAVA MONOLITHS

TODAY

JAVA MONOLITHS

APP SERVER
JAVA

MONOLITH

JAVA
MONOLITH

PAST

GO
MIC.-SERV.

CONTAINER MANAGER

JS
MIC.-SERV.

JAVA

PYTHON
MIC.-SERV.

C#
MIC.-SERV.

NOW

MIC.-SERV.
JAVA

MIC.-SERV.

APP SERVER
JAVA

MONOLITH

JAVA
MONOLITH

PAST

GO
MIC.-SERV.

CONTAINER MANAGER

JS
MIC.-SERV.

JAVA
MIC.-SERV.

JAVA
MIC.-SERV.

PYTHON
MIC.-SERV.

C#
MIC.-SERV.

NOW

JAVA USES MORE
MEMORY & CPU THAN

JAVASCRIPT & PYTHON

JAVA MORE EXPENSIVE
IN CONTAINERS/VMS

JAVA’S NEW
COMPETITION:

JAVASCRIPT & PYTHON

POPULARITY?

I MEASURE
POPULARITY:

FOLLOW THE MONEY

MENTIONS IN JOB ADS
ON INDEED

(59 COUNTRIES)

SEP 22 NOV 22 DEC 22 JAN 23 FEB 23 MAR 23 APR 23 JUN 23

111%110%111%110%110%111%113%
116%

93%91%91%93%
90%

59%57%58%56%57%56%56%56%

100%100%100%100%100%100%100%100%

C#: 133K

PYTHON: 277.1K

JAVASCRIPT: 238.5K

C#: 86.7K

PYTHON: 163.3K

JAVASCRIPT: 147.4K

JAVA: 177.5

JAVA: 137.5K

MORE JOB ADS FOR
JAVASCRIPT & PYTHON!

COURSES BOUGHT
ON UDEMY

(IN MILLION)

0

15

30

45

PYTHON

42.6

0

15

30

45

C# JAVA JAVASCRIPT

15.514.2
6

BEGINNERS &
DEVELOPERS PICK

PYTHON OVER JAVA 3:1…

…AND 3.5:1 IN
LAST 15 MONTHS!

JAVASCRIPT & PYTHON
MORE POPULAR

THAN JAVA

SAME FOR GOOGLE
SEARCHES & STACK

OVERFLOW

MY FREE NEWSLETTER:
POPULARITY OF 7 JAVA

TECHNOLOGIES

BUT JAVA IS FASTER
FOR LONG-LIVED
APPLICATIONS!

YES

BUT THAT OFTEN
DOES NOT MATTER!

DOESN’T APPLY TO
SHORT-LIVED APPS

NO JAVA DEVELOPERS:
SLOW JAVASCRIPT APP

BETTER THAN NO APP

IF APP SPENDS
90% OF TIME WAITING

FOR DB & APIS…

…THEN JAVA CAN BE
ONLY 10% FASTER

COMPETITIVE
ADVANTAGES

PYTHON:
LANGUAGE OF AI

JAVASCRIPT:
FRONT-END & BACK-END

SECTION SUMMARY

JAVA EXPENSIVE:
TUNED FOR LONG-LIVED

BIG APPLICATIONS

JAVA’S NEW
COMPETITION:

JAVASCRIPT & PYTHON

AGENDA PROBLEM?

CDS & CRAC
GRAALVM

WORTH IT WHEN?

CDS & CRAC

NOT DRUGS!

MAKE JIT JAVA
CHEAPER…

…BY SAVING
CPU TIME

= FASTER START

SAVES MONEY
HOW?

FEWER STANDBY
SERVERS/NODES

POSSIBLY CHEAPER
IN SERVERLESS

LESS MEMORY
SAVES MORE MONEY
THAN FASTER START

WHY?

MORE CONTAINERS/VMS
PER MACHINE

(UNLESS CPU-LIMITED)

= LESS MACHINES

BACK TO
CDS & CRAC

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

CLASS
LIST

INIT JDK &
FRAMEWORK

INIT
APP

JAVA COMPILER

JVM

RUNS EACH TIME,
SAME RESULT:

MANY JAVA OBJECTS

BYTE-
CODE

MACHINE
CODE

JIT COMPILER

…

CACHE JAVA OBJECTS

STORE THEM
ON FIRST RUN…

…AND LOAD THEM
ON NEXT RUNS

SAVES CPU TIME
BUT NOT MEMORY

CDS:
CLASS DATA SHARING

CACHES CLASS LIST

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

CLASS
LIST

INIT JDK &
FRAMEWORK

INIT
APP

JAVA COMPILER

JVM
BYTE-
CODE

MACHINE
CODE

JIT COMPILER

…

SAVES ~10% OF
START TIME

ENABLED WITH JAVA 17
JRE PARAMETERS

CRAC:
COORDINATED RESTORE

AT CHECKPOINT

CACHES
FULL APPLICATION

SNAPSHOT

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

CLASS
LIST

INIT JDK &
FRAMEWORK

INIT
APP

JAVA COMPILER

JVM
BYTE-
CODE

MACHINE
CODE

JIT COMPILER

…

INCLUDES
MACHINE CODE

APP DECIDES WHEN
TO TAKE SNAPSHOT

 CRAC START TIME:
QUARKUS: 1 S => 46 MS

SPRING BOOT: 3.9 S => 38 MS

JAVA CHEAPER:
CDS, CRAC123,
GRAALVM45678

CRAC123

1 AZUL OPENJDK
2 FRAMEWORK

3 LINUX ONLY

CATCH #1:
AZUL OPENJDK

ONLY AZUL OPENJDK
SUPPORTS CRAC

FREE FOR PRODUCTION

CATCH #2:
FRAMEWORK

SPRING BOOT 3.2
(NOV 23) / QUARKUS /

MICRONAUT

CATCH #3:
LINUX ONLY

CRIU:
CHECKPOINT RESTORE

IN USERSPACE

SECTION SUMMARY

JAVA CHEAPER:
CDS, CRAC123,

GRAALVM45678GRAALVM45678

AGENDA PROBLEM?

CDS & CRAC

GRAALVM
WORTH IT WHEN?

GRAALVM

MAKES NATIVE JAVA
CHEAPER…

…BY SAVING
CPU TIME & MEMORY

THREE GRAALVM
PROJECTS

GRAALVM NATIVE IMAGE
COMPILER

PART OF OPENJDK
SINCE 2023

RELEASES WITH JAVA
SINCE JAVA 21

NATIVE JAVA?

"NATIVE JAVA" =
"STATIC JAVA" =

"AOT JAVA"
"GRAALVM"

java -jar my-app-1.2.jar

FROM 1 BYTECODE JAR…

./my-app-1.2-runner

my-app-1.2-runner.exe

…TO 3 EXECUTABLES
./my-app-1.2-runner

DEMO MICROSERVICE
FOR THIS TALK

80 PICTURES TO PDF 5X:
SPRING BOOT /
QUARKUS / GO

SAVINGS WITH
NATIVE IMAGE

START SB 2 – QUARKUS
TIME (MS): 589 – 10.4
RAM (MB): 107 – 5.6

START SB 2 – QUARKUS – GO
TIME (MS): 589 – 10.4 – 2.6
RAM (MB): 107 – 5.6 – 2.8

HOW?

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

CLASS
LIST

INIT JDK &
FRAMEWORK

INIT
APP

JAVA COMPILER

JVM
BYTE-
CODE

MACHINE
CODE

JIT COMPILER

…

MOVE WORK
TO BUILD TIME

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

CLASS
LIST

INIT JDK &
FRAMEWORK

INIT
APP

JAVA COMPILER

JVM
BYTE-
CODE

MACHINE
CODE

JIT COMPILER

…

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

CLASS
LIST

INIT JDK &
FRAMEWORK

INIT
APP

JAVA COMPILER

JVM
BYTE-
CODE

MACHINE
CODE

JIT COMPILER

…

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

CLASS
LIST

INIT JDK &
FRAMEWORK

INIT
APP

JAVA COMPILER

JVM
BYTE-
CODE

MACHINE
CODE

…

AOT: AHEAD-OF-TIME
(LIKE C++-COMPILER)

COMPILERAOT

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

INIT JDK &
FRAMEWORK

INIT
APP

JAVA COMPILER

JVM

MACHINE
CODE

…MACHINE
CODE

CLASS
LIST

COMPILERAOT

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

INIT JDK &
FRAMEWORK

INIT
APP

JAVA COMPILER

JVM

MACHINE
CODE

MACHINE
CODE

CLASS
LIST

COMPILERAOT

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

LITTLE INIT JDK &
FRAMEWORK

LITTLE INIT
APP

JAVA COMPILER

JVM

MACHINE
CODE

MACHINE
CODE

CLASS
LIST

AOT COMPILER
MUCH INIT JDK &

FRAMEWORK
MUCH INIT

APP

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

LITTLE INIT JDK &
FRAMEWORK

LITTLE INIT
APP

JAVA COMPILER

SUBSTRATE VM
MACHINE

CODE

GRAALVM NATIVE IMAGE
MACHINE

CODE
CLASS

LIST
MUCH INIT JDK &

FRAMEWORK
MUCH INIT

APP

FASTER START
LESS MEMORY

SMALLER FILES
BETTER SECURITY

CWA

CWA?

CZECH WRESTLING
ASSOCIATION?

CAT WRITING
ASSOCIATION?

CLOSED WORLD
ASSUMPTION!

BUILD TIME

RUNTIME

SOURCE
CODE

BYTE-
CODE

LITTLE INIT JDK &
FRAMEWORK

LITTLE INIT
APP

JAVA COMPILER

SUBSTRATE VM
MACHINE

CODE

GRAALVM NATIVE IMAGE
MACHINE

CODE
CLASS

LIST
MUCH INIT JDK &

FRAMEWORK
MUCH INIT

APPCWA

CWA: AT BUILD TIME

ALL CLASSES KNOWN
OUR APPLICATION, OUR
LIBRARIES, FRAMEWORK & JDK

ALL RESSOURCES KNOWN
ALL FILES WE WANT TO LOAD -
PROPERTY FILES, RESOURCE
BUNDLES, ETC.

NATIVE IMAGE
REMOVES "ALL

UNNECESSARY STUFF"

FASTER START
LESS MEMORY

SMALLER FILES
BETTER SECURITY

SMALLER FILES

JAR EXECUTABLE

112.5

346.8

QUARKUS: FILE SIZE (MB)

28.5%

119.3

APP

JRE

BETTER SECURITY

LOG4SHELL

BETTER SECURITY

SMALLER ATTACK SURFACE
REMOVING UNUSED CODE ALSO
REMOVES POTENTIAL SECURITY
HOLDS IN FRAMEWORKS &
LIBRARIES

ARBITRARY CODE DOESN’T RUN
ATTACKS LIKE LOG4SHELL GET JAVA TO
LOAD & RUN ATTACK CODE

CWA STOPS THIS: CODE MUST BE
KNOWN AT BUILD TIME

FASTER STARTUP
LESS MEMORY

SMALLER FILES
BETTER SECURITY

JAVA CHEAPER:
CDS, CRAC123,
GRAALVM45678GRAALVM45678

4 NOT ALL JAVA WORKS
5 FRAMEWORK

6 PERFORMANCE

7 MORE DEVELOPER TIME
8 HARDER HIRING

CATCH #4:
NOT ALL JAVA WORKS

POSSIBLE OR NOT?

ALWAYS IMPOSSIBLE
CREATE NEW
CLASSES & METHODS
AT RUNTIME

RUN ARBITRARY
BYTECODE

PARTIALLY/ONGOING WORK
AWT (NOT ON MACOS)

JMX

JAVA FLIGHT RECORDER

TEST FRAMEWORKS

ALWAYS POSSIBLE
REFLECTION & CLASS
LOADING - REQUIRES
CONFIGURATION

SUBSTRATE VM: GARBAGE
COLLECTION, THREAD
MANAGEMENT

MISSING CLASS =
RUNTIME CRASH

LIBRARIES DO
IMPOSSIBLE THINGS

TOO…

…AND NEED
CONFIGURATION!

CATCH #5:
FRAMEWORK

GRAALVM RECOMMENDS:
USE FRAMEWORK

BUT SOME WANT NO
FRAMEWORK OR USE

HOMEGROWN ONE

FRAMEWORKS WITH GRAALVM PRODUCTION SUPPORT

WHY FRAMEWORKS?
CONFIGURE NATIVE IMAGE &
LIBRARIES

SHIP WITH COMPATIBLE LIBRARIES

ADDITIONAL FEATURES (LIKE HOT
CODE RELOAD IN QUARKUS)

WHICH FRAMEWORKS?
NEW: QUARKUS & MICRONAUT
– NOT HELIDON, NO JOB DEMAND

OLD: SPRING BOOT 3 (NOV 2022)

JAKARTA EE: NO

CATCH #6:
PERFORMANCE

PEAK PERFORMANCE
OFTEN WORSE THAN

JIT JAVA

PEAK PERFORMANCE

GRAALVM COMMUNITY EDITION
SERIAL GARBAGE COLLECTOR: STOP
THE WORLD, SINGLE-THREADED

ONLY GLOBAL OPTIMIZATIONS

ORACLE GRAALVM FOR JAVA 17 & 21
G1 GARBAGE COLLECTOR: NOT "STOP THE
WORLD", MULTI-THREADED (LINUX ONLY)

PROFILE-GUIDED OPTIMIZATION (PGO):
NATIVE IMAGE INSTRUMENTS EXECUTABLE
FOR PROFILING, USES DATA LATER FOR
COMPILATION

ORACLE GRAALVM FOR
JAVA 17 & 21 FREE FOR

PRODUCTION…

…BUT HAS NEW LICENSE

CATCH #7:
MORE DEVELOPER TIME

MORE DEVELOPER TIME

CONFIGURATION
REFLECTION & CLASS
LOADING: MANUALLY OR
WITH TRACING AGENT
(MONITORS JIT JAVA)

POSSIBLY DISABLE BUILD
TIME INIT

BUILD & DEPLOYMENT
BUILDS TAKE MUCH LONGER,
CREATE 1 EXECUTABLE PER
PLATFORM (NO CROSS-
COMPILIERUNG)

DEBUGGING ON MACOS &
WINDOWS TAKES MUCH
LONGER (LINUX DETOUR)

MONITORING & PRODUCTION
SOME OBSERVABILITY
TOOLS DON’T RUN AT ALL,
OTHER ONES GIVE LESS
DATA

TROUBLESHOOTING TAKES
LONGER

LESS TRAINING
MATERIALS, LESS

ANSWERS

DEVELOPING FOR NATIVE JAVA

MOST OF THE TIME
DEVELOPERS USE JIT JAVA - AS
USUAL

CI/CD PIPELINE BUILDS NATIVE
JAVA EXECUTABLES

RARELY
DEVELOPERS BUILD NATIVE JAVA
EXECUTABLES THEMSELVES (E.G.,
BEFORE MERGE OR FOR NEW
LIBRARIES)

DEBUGGING NATIVE JAVA ON MAC &
WINDOWS STILL ANNOYING

CATCH #8:
HARDER HIRING

NATIVE JAVA:
LOW JOB DEMAND

(INDEED UK, SEP 2023)

https://uk.indeed.com

HELIDON QUARKUS MICRONAUT JAKARTA EE SPRING BOOT

527

2538290

HELIDON + QUARKUS +
MICRONAUT =

13% OF SPRING BOOT

INDICATES LOW SUPPLY
OF GRAALVM EXPERTS

HARD TO CONVINCE
BOSS & TEAMMATES

SECTION SUMMARY

FASTER START
LESS MEMORY

SMALLER FILES
BETTER SECURITY

JAVA CHEAPER:
CDS, CRAC12,

GRAALVM34567GRAALVM34567

JAVA CHEAPER:

START SB 2 – QUARKUS
TIME (MS): 589 – 10.4

RAM (MB): 107 – 7.3

GRAALVM

AGENDA PROBLEM?

CDS & CRAC

GRAALVM

WORTH IT WHEN?

WORTH IT WHEN?

MY "FIVE STEP PLAN
FOR NATIVE JAVA"

EVERY STEP:
"GO/NO GO" DECISION

1. DOES THE BOSS CARE?
2. DO THE NUMBERS ADD UP?
3. COULD IT WORK?
4. START SMALL
5. GO BIG

DOES THE BOSS
CARE?

OUR JOB:
CREATE BUSINESS VALUE

…NOT BOASTING
ABOUT MILLISECOND

START TIMES!

DOES THE BOSS CARE?

OUR JOB
CREATE BUSINESS VALUE – NEW
FEATURES, BUG FIXES

"BUSINESS VALUE" NOT "SAVING
MONEY"

BOSS DOESN’T CARE BECAUSE…
NEW FEATURES MORE IMPORTANT NOW

THEIR BONUS DOESN’T DEPEND ON
SAVINGS IN IT DEPARTMENT

COST SAVINGS DON’T CHANGE IT BUDGET

✓ 1. DOES THE BOSS CARE?
2. DO THE NUMBERS ADD UP?
3. COULD IT WORK?
4. START SMALL
5. GO BIG

DO THE NUMBERS
ADD UP?

CATCH #6:
MORE DEVELOPER TIME

BAD FOR NATIVE JAVA:

DEVELOPER TIME GETS
MORE EXPENSIVE…

…WHILE HARDWARE
 GETS CHEAPER

5.6

107

JIT JAVA VS. NATIVE JAVA: MEMORY
MICRO-

SERVICE

5.2%

14501650

MONO-
LITH

87.8%

200 MB LESS IN
1.6 GB HEAP SPACE?

10.4

604

JIT JAVA VS. NATIVE JAVA: START TIME
MICRO-

SERVICE
(MS)

1.7% 20

60

MONO-
LITH (S)

33.3%

40 SECONDS LESS START
TIME EVERY 2 WEEKS?

MONOLITH =
MANY LIBRARIES =

HIGHER RISK OF
"DOESN’T WORK"

MONOLITH
 MICROSERVICES ✓

SERVERLESS
✓
❌

❌

MORE CONTAINERS/VMS
PER MACHINE

(UNLESS CPU-LIMITED)

ANNUAL SAVINGS:
10K – OR 10M?

JAVA IN
SERVERLESS?

RED HAT KEYNOTE @
DEVOXX UK, MAY 2022

JAVASCRIPT
62.9%

PYTHON
20.8%

GO
6.4%

JAVA
6.1%

C#
3.8%

LOW SHARE BECAUSE
YOU CAN NOT USE JAVA
WELL IN SERVERLESS…

…OR BECAUSE SAVINGS
FOR CPU & MEMORY
ARE NOT USED YET?

I DON’T KNOW

MONOLITH
 MICROSERVICES ✓

SERVERLESS
✓
❌

❌

COSTS OF NATIVE JAVA

ONE-TIME
NEW FRAMEWORK (QUARKUS, MICRONAUT)
OR UPGRADE (SPRING BOOT 3: JAVA 17,
JAKARTA EE 9) – LIBRARIES!

TRAIN HOW MANY DEVELOPERS?

DEVELOPER PCS, BUILD PIPELINE, CI/CD,
OBSERVABILITY, …

RECURRING
TROUBLESHOOTING TAKES
LONGER, LESS ANSWERS,
OBSERVABILITY WORSE

FEWER DEVELOPERS WITH
NATIVE JAVA EXPERIENCE

THE SMALLER THE APP
SIZE & RUN TIME,

THE BETTER

ESTIMATE –
WE DON’T KNOW

✓
✓

1. DOES THE BOSS CARE?
2. DO THE NUMBERS ADD UP?
3. COULD IT WORK?
4. START SMALL
5. GO BIG

COULD IT WORK?

COULD IT WORK

WHAT WE KNOW
DO OUR APPLICATIONS DO THINGS
THAT DON’T WORK IN NATIVE
JAVA?

DOES THE OBSERVABILITY WORK
IN NATIVE JAVA?

WHAT WE DON’T KNOW
DO THE LIBRARIES WORK IN
NATIVE JAVA?

✓
✓
✓

1. DOES THE BOSS CARE?
2. DO THE NUMBERS ADD UP?
3. COULD IT WORK?
4. START SMALL
5. GO BIG

START SMALL

START SMALL

FOR MICROSERVICES
START NEW/RE-IMPLEMENT IN
NATIVE JAVA

SMALL TEAM, LOW COSTS, LOW RISK

GOAL: DO THE NUMBERS STILL ADD
UP?

FOR MONOLITHS
BREAK OFF A SMALL PART AS
MICROSERVICE

THEN: SEE LEFT

WHICH FRAMEWORK?

MY DEMO

START TIME

2.6

10.4

14.2
SPRING BOOT 3 VS. QUARKUS 3 VS. GO

PEAK MEMORY

186183
236.8

START MEMORY

2.8

5.6

9

JIT JAVA VS. NATIVE JAVA: PROCESSING TIME

QUARKUS

9.3

6.1

SPRING BOOT 3

9.4

6.1

NATIVE JAVA: ONLY
65-66% OF JIT JAVA

PERFORMANCE

QUARKUS: BEST START
TIME & MEMORY USE…

…VS. FRAMEWORK
SWITCHING COSTS

MICRONAUT:
"SPRING BOOT MINUS

REFLECTION"

ALL FRAMEWORKS SPRING BOOT QUARKUS & MICRONAUT
TRY A DIFFERENT
FRAMEWORK - SPRING
BOOT 3, QUARKUS, OR
MICRONAUT

FIRST MIGRATE TO 3.X

THEN TEST NATIVE
JAVA

KEEP IT IF IT WORKS

FRAMEWORK RECOMMENDATIONS

✓
✓
✓
✓

1. DOES THE BOSS CARE?
2. DO THE NUMBERS ADD UP?
3. COULD IT WORK?
4. START SMALL
5. GO BIG

GO BIG

GO BIG

CAREFULLY CONTINUE TO ROLL OUT NATIVE JAVA

ADJUST CONSTANTLY

ONLY MIGRATE APPLICATIONS TO NATIVE JAVA IF
IT ADDS UP

✓
✓
✓
✓
✓

1. DOES THE BOSS CARE?
2. DO THE NUMBERS ADD UP?
3. COULD IT WORK?
4. START SMALL
5. GO BIG

FOR MOST OF YOU:
NOT NOW

WHY NOT?

1. DOES THE BOSS CARE?
2. DO THE NUMBERS ADD UP?
3. COULD IT WORK?
4. START SMALL
5. GO BIG

❌

❌

HARD TO HIRE FOR

WHY NOW?

ADDITIONAL DEVELOPER
TIME MAY DECREASE

LIBRARIES NOT
WORKING MAY

DECREASE

SAVINGS MAY INCREASE

WORTH IT WHEN?

AGENDA PROBLEM?

CDS & CRAC

GRAALVM

WORTH IT WHEN?

SUMMARY

JAVA EXPENSIVE:
TUNED FOR LONG-LIVED

BIG APPLICATIONS

JAVA’S NEW
COMPETITION:

JAVASCRIPT & PYTHON

JAVA CHEAPER:
CDS, CRAC123,
GRAALVM45678

FASTER START
LESS MEMORY

SMALLER FILES
BETTER SECURITY

START SB 2 – QUARKUS
TIME (MS): 589 – 10.4

RAM (MB): 107 – 7.3

MONOLITH
 MICROSERVICES ✓

SERVERLESS
✓
❌

❌

WHEN IS NATIVE JAVA
WITH GRAALVM

WORTHWHILE FOR ME?

FOR MOST OF YOU:
NOT NOW

QUARKUS TEAM, RED HAT
BEN EVANS
DIMITRIS ANDREADIS
FOLVOS ZAKKAK
GALDER ZAMARRENO
HOLLY CUMMINS
MAX RYDAHL ANDERSEN
MICHAEL KAM BARBACEC
PATRICK BAUMGARTNER
SANNE GRINOVERO

OPENJ9 TEAM, RED HAT
DAN HEIDINGA

GRAALVM TEAM, ORACLE
ALINA YURENKO

AZUL
SIMON RITTER

MY TALK DOESN’T STOP
WHEN I STOP TALKINGTM

SLIDES

ADDITIONAL INFORMATION

DEMO CODE REPOS

GET STARTED WITH NATIVE JAVA

JAVA TECH POPULARITY NEWSLETTER BPF.LI/LAB

https://bpf.li/lab
https://bpf.li/lab

