
HOW SHOULD JAVA DEVELOPERS BUILD FRONT-
ENDS FOR WEB, MOBILE, AND DESKTOP TODAY?

KARSTEN SILZ

JANUARY 20, 2021

#KARSILZ

BPF.LI/S

https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li
https://bpf.li

BPF.LI/PAT

SLIDES & VIDEOS

GET STARTED

HOW TO BUILD 
JAVA APPS TODAY?

https://bpf.li/pat

YOU GET A NEW PRESIDENT
DURING MY TALK!

BACK TO OUR REGULARLY
SCHEDULED PROGRAM

I GIVE ADVICE…

…SO WHAT’S MY ANGLE?

JAVA DEVELOPER FOR 22 YEARS

MOSTLY BACK-END

CAN DESIGN FRONT-END MYSELF

CAN BE EARLY ADOPTER

I GIVE YOU OPTIONS FOR
YOUR NEXT PROJECT!

APPLY YOUR OWN CRITERIA
(TECHNICAL, LEGAL, ETHICAL, …)

EVALUATE IN YOUR ENVIRONMENT

MAKE YOUR OWN CHOICES

WHAT YOU NEED TO DO

HOW SHOULD JAVA DEVELOPERS
BUILD FRONT-ENDS TODAY?

HOW CAN WE 
BUILD FRONT-ENDS TODAY?

DATA ENTRY & RETRIEVAL

DRILLING DOWN INTO DATA DETAILS

NAVIGATION BETWEEN SCREENS

NO GAMES OR MEDIA APPLICATIONS

APPLICATION REQUIREMENTS

TO DO APP

EXPENSE FILING

CHAT

SOCIAL NETWORK

EXAMPLE APPLICATIONS

APPLIES TO THESE
DEVICES…

PC MOBILE

…BUT NOT TO THESE
DEVICES!

WEARABLES TV

EXPENSE FILING OR CHAT APPLICATION

SUMMARY: APPLICATIONS

HOW SHOULD JAVA DEVELOPERS
BUILD FRONT-ENDS TODAY?

HOW CAN WE 
BUILD FRONT-ENDS TODAY?

WE CAN GO SAFE

SAFE?

STILL HERE IN 
5 YEARS - FOR SURE

WEB

NATIVE

NATIVE

NATIVE

NATIVE

NATIVE

WEB NATIVE

ONE CODE BASE
SLOW
LESS FEATURES
JAVASCRIPT
BAD DEBUGGING

5 CODE BASES

5 LANGUAGES
GOOD DEBUGGING

FAST
ALL FEATURES

CROSS-PLATFORM

ONE CODE BASE

GOOD DEBUGGING

FAST
ALL FEATURES

THIS TALK: NO PURE 
NATIVE FRAMEWORKS!

WEB FRAMEWORKS

ANGULAR (GOOGLE)

REACT (FACEBOOK)

VUE.JS (PERSON: EVAN YOU)

X-PLATFORM FRAMEWORKS

FLUTTER (GOOGLE)

JAVAFX (GLUON)

REACT NATIVE (FACEBOOK)

XAMARIN (MICROSOFT)

STATE OF THE ART:

DECLARATIVE UIS

EXAMPLE:

APPLE SWIFTUI

@State var count: Int = 0

var body: some

View {

 VStack(alignment: .center,

 content: {

 Text("Counter: \(count)")

 .padding()

 Button(action: {

 self.count += 1

 }, label: {

 Text("Increment")

 })

 })

}

@State var count: Int = 0

var body: some

View {

 VStack(alignment: .center,

 content: {

 Text("Counter: \(count)")

 .padding()

 Button(action: {

 self.count += 1

 }, label: {

 Text("Increment")

 })

 })

}

@State var count: Int = 0

var body: some

View {

 VStack(alignment: .center,

 content: {

 Text("Counter: \(count)")

 .padding()

 Button(action: {

 self.count += 1

 }, label: {

 Text("Increment")

 })

 })

}

HOW DOES IT WORK?

@State var count: Int = 0

var body: some

View {

 VStack(alignment: .center,

 content: {

 Text("Counter: \(count)")

 .padding()

 Button(action: {

 self.count += 1

 }, label: {

 Text("Increment")

 })

 })

}

1

@State var count: Int = 0

var body: some

View {

 VStack(alignment: .center,

 content: {

 Text("Counter: \(count)")

 .padding()

 Button(action: {

 self.count += 1

 }, label: {

 Text("Increment")

 })

 })

}

2

@State var count: Int = 0

var body: some

View {

 VStack(alignment: .center,

 content: {

 Text("Counter: \(count)")

 .padding()

 Button(action: {

 self.count += 1

 }, label: {

 Text("Increment")

 })

 })

}

3

@State var count: Int = 0

var body: some

View {

 VStack(alignment: .center,

 content: {

 Text("Counter: \(count)")

 .padding()

 Button(action: {

 self.count += 1

 }, label: {

 Text("Increment")

 })

 })

}

4

@State var count: Int = 0

var body: some

View {

 VStack(alignment: .center,

 content: {

 Text("Counter: \(count)")

 .padding()

 Button(action: {

 self.count += 1

 }, label: {

 Text("Increment")

 })

 })

}

5

@State var count: Int = 0

var body: some

View {

 VStack(alignment: .center,

 content: {

 Text("Counter: \(count)")

 .padding()

 Button(action: {

 self.count += 1

 }, label: {

 Text("Increment")

 })

 })

}

6

WHAT DID WE JUST SEE?

@State var count: Int = 0

var body: some

View {

 VStack(alignment: .center,

 content: {

 Text("Counter: \(count)")

 .padding()

 Button(action: {

 self.count += 1

 }, label: {

 Text("Increment")

 })

 })

}

FRONT-END 
AS CODE

@State var count: Int = 0

var body: some

View {

 VStack(alignment: .center,

 content: {

 Text("Counter: \(count)")

 .padding()

 Button(action: {

 self.count += 1

 }, label: {

 Text("Increment")

 })

 })

}

NEST ELEMENTS
WITH 

BUILDER PATTERN

@State var count: Int = 0

var body: some

View {

 VStack(alignment: .center,

 content: {

 Text("Counter: \(count)")

 .padding()

 Button(action: {

 self.count += 1

 }, label: {

 Text("Increment")

 })

 })

}

CHANGE STATE
AFTER EVENTS, 

PLATFORM
REDRAWS 

FRONT-END

DECLARATIVE FRONT-ENDS

FRONT-END AS CODE

NEST ELEMENTS WITH BUILDER PATTERN

CHANGES STATE AFTER EVENTS, 
PLATFORM REDRAWS FRONT-END

SWIFTUI

SWIFTUI

.NET MAUI (NOVEMBER 2021)

JETPACK COMPOSE (ALPHA)

REACT

WHAT IF CROSS-PLATFORM OPTION DOESN’T 
WORK OUT OR GOES AWAY?

THEN WE CAN’T TAKE OUR CODE WITH US…

…BUT OUR KNOWLEDGE STILL APPLIES!

WHY STATE OF THE ART?

SUMMARY: FRONT-ENDS

WEB FRAMEWORKS: ANGULAR, REACT, VUE.JS

CROSS-PLATFORM FRAMEWORKS: FLUTTER, 
JAVAFX, REACT NATIVE, XAMARIN

STATE OF THE ART: DECLARATIVE FRONT-ENDS

HOW SHOULD JAVA DEVELOPERS
BUILD FRONT-ENDS TODAY?

HOW CAN WE 
BUILD FRONT-ENDS TODAY?

JAVA DEVELOPERS 
WISH LIST

JAVA

DECLARATIVE

WEB APPS

MOBILE APPS

DESKTOP APPS

ALL NATIVE 
FEATURES

ONE CODE BASE

FAST BUILD, DE-

PLOY & DEBUG

SAFE

POPULAR COMPLETE

FAST

WHY POPULAR?

EASIER TO LEARN

EASIER TO BUILD, DEPLOY & DEBUG

EASIER TO HIRE

DIFFICULT TO MEASURE - INPUT WELCOME!

HOW SHOULD JAVA DEVELOPERS
BUILD FRONT-ENDS TODAY?

HOW CAN WE 
BUILD FRONT-ENDS TODAY?

WHAT FRONT-ENDS?

SCENARIOS

#1: JUST WEB: BUILD ONLY WEB APPLICATION, 
FROM SCRATCH

#2: NATIVE APPS: WEB APPLICATION EXISTS, BUILD
NATIVE IOS & ANDROID APPS FROM SCRATCH

#3: DESKTOP APPS: WEB APPLICATION EXISTS

DISCLAIMER

I ONLY WORKED WITH ANGULAR & FLUTTER

EVALUATIONS OF THE OTHER FRAMEWORKS BASED ON 
MY RESEARCH, NOT PRACTICAL EXPERIENCES

HOW SHOULD JAVA DEVELOPERS
BUILD FRONT-ENDS TODAY?

HOW CAN WE 
BUILD FRONT-ENDS TODAY?

#1: JUST WEB

ANGULAR (GOOGLE)

REACT (FACEBOOK)

VUE.JS (PERSON: EVAN YOU)

POPULAR:

GOOGLE TRENDS

POPULAR:

STACK OVERFLOW

POPULARITY: JUST WEB

REACT MOST POPULAR, GROWING/FLAT

ANGULAR SECOND, SHRINKING

VUE.JS LAST, GROWING/FLAT

WISHLIST SCORE

JAVA

DECLARATIVE

WEB APPS

MOBILE APPS

DESKTOP APPS

ALL NATIVE 
FEATURES

ONE CODE BASE

FAST BUILD, DE-

PLOY & DEBUG

SAFE

POPULAR COMPLETE

FAST

JAVA

DECLARATIVE

FAST BUILD, DE-

PLOY & DEBUG

SAFE

POPULAR COMPLETE

FASTANG

ANG

REA

REA

REA

REA

???

SCORE: JUST WEB

REACT WINS

ANGULAR SECOND

VUE.JS LAST

ADVICE: #1: JUST WEB

IF YOU ALREADY USE REACT, ANGULAR,
OR VUE.JS, THEN KEEP IT

IF YOU DON’T, THEN GO FOR REACT
FIRST, THEN ANGULAR, THEN VUE.JS

#2: NATIVE APPS

FLUTTER (GOOGLE)

JAVAFX (GLUON)

REACT NATIVE (FACEBOOK)

XAMARIN (MICROSOFT)

POPULAR:

GOOGLE TRENDS

POPULAR:

STACK OVERFLOW

POPULARITY: NATIVE APPS

FLUTTER MOST POPULAR, GROWING

REACT NATIVE SECOND, FLAT

XAMARIN THIRD, SHRINKING/FLAT

JAVAFX LAST, SHRINKING/FLAT

XAMARIN

NOT DECLARATIVE

NOT FULLY OPEN-SOURCE

WILL BE REPLACED BY .NET MAUI 
(SCHEDULED FOR NOVEMBER 2021)

JAVAFX

NOT DECLARATIVE

REMOVED FROM JDK IN JAVA 11

BACKED BY GLUON

XAMARIN & JAVAFX 
ARE OUT!

#2: NATIVE APPS

FLUTTER (GOOGLE)

JAVAFX (GLUON)

REACT NATIVE (FACEBOOK)

XAMARIN (MICROSOFT)

#2: NATIVE APPS

FLUTTER (GOOGLE)

REACT NATIVE (FACEBOOK)

HOW DO REACT NATIVE &
FLUTTER WORK?

JAVASCRIPT

DART

JAVASCRIPT
VM

DEV: DART VM

PROD: NATIVE
CODE

SKIA REND.

ENGINE

JAVASCRIPT 
BRIDGE

NATIVE UI

ELEMENTS

EMULATED UI

ELEMENTS

REACT NATIVE
FLUTTER

REACT NATIVE FLUTTER

JAVASCRIPT
SLOWER RENDERING

EMULATED UI ELEMENTS
FASTER RENDERING
DART

NATIVE UI ELEMENTS

I ONLY GO DEEP WITH
FLUTTER IN THIS TALK!

WHAT IS FLUTTER?

"FLUTTER IS GOOGLE’S UI TOOLKIT
FOR BUILDING BEAUTIFUL, NATIVELY

COMPILED APPLICATIONS FOR
MOBILE, WEB, AND DESKTOP FROM

A SINGLE CODEBASE."

"PORTABLE UI TOOLKIT FOR ANY
PLACE WHERE PIXELS ARE PAINTED"

WRITE ONCE, RUN
ANYWHERE?!

REALLY BUILD MOBILE,
WEB & DESKTOP FROM 

ONE CODEBASE?

YES, BUT…

ONLY MATERIAL DESIGN UI ELEMENTS FOR 
WEB & DESKTOP (GOOGLE DESIGN LANGUAGE)

WEB: BETA SINCE DEC 2019

DESKTOP: ALPHA - MAC SINCE DEC 2019, LINUX 
SINCE JULY 2019, WINDOWS SINCE SEP 2020

WHAT DOES MATERIAL
DESIGN LOOK LIKE?

UI ELEMENTS ON MOBILE

IOS: NATIVE LOOK & FEEL, BUT
INCOMPLETE (FORMS, TABLES)

ANDROID: MATERIAL DESIGN

PLUGINS FILL HOLES

MY APP DEMO: IOS

WHAT DID WE JUST SEE?

SUMMARY: APP DEMO

NATIVE LOOK & FEEL, BUT SOME ISSUES REMAIN

PERFORMANCE OK, BUT NOT OPTIMISED, YET

USES PLATFORM (PASSWORDS, EMAIL, 
PHOTO GALLERY)

IOS VS ANDROID

SWIFTUI VS FLUTTER

int _counter = 0;

return Column(

 mainAxisAlignment: MAA.center,

 children: [

 Text('Counter: $_counter'),

 TextButton(onPressed: () =>

 setState({_counter += 1}),

 child: Text('Increment'),

),

],

);

@State var count: Int = 0

var body: some View {

 VStack(alignment: .center,

 content: {

 Text("Counter: \(count)")

 .padding()

 Button(action: {

 self.count += 1

 }, label: {

 Text("Increment")

 })

 })

}

WHAT DID WE JUST SEE?

FLUTTER IS DECLARATIVE

SYNTAX SLIGHTLY DIFFERENT 
FROM SWIFTUI

STATE CHANGES ARE MARKED:
SETSTATE({ … });

EVERYTHING IS A WIDGET

STATELESS WIDGETS: TEXT, BUTTON

STATEFUL WIDGETS: INPUT FIELDS

BOTH REPAINT IF PARENT CHANGES

STATEFUL REPAINT IF STATE CHANGES

HOW DOES FLUTTER RUN?

STAND-ALONE APP

AS SCREENS IN NATIVE APP

NATIVE INTEGRATION?

THROUGH PLUGINS (CAMERA, PICTURES, …)

SHOW NATIVE SCREENS IN FLUTTER

TALK TO NATIVE CODE THROUGH CHANNELS
(PUBLISH & SUBSCRIBE) OR C API

FAST BUILD & DEPLOY!

MOBILE BUILD TIMES ARE LONG

HOT RELOAD SHOWS CHANGES IMMEDIATELY

HOT RESTART STARTS APP ANEW IN A FEW SECONDS

DEV TOOLS GIVE GREAT INSIGHTS

DEV TOOLS

HAVE BARELY USED THEM

PROMISE TO HELP WITH TUNING THE APP

NOW ONTO DART!

WHY CAN’T WE JUST USE
JAVA INSTEAD OF DART?

class MyClass extends AnotherClass {

 String myString;

 int myInt;

 List<String> myList = List<String>();

 String sayHello(String name) {

 var feedback = "Hello, " + name;

 return feedback;

 }

}

THIS IS DART!

WHAT IS DART?

"SIMPLIFIED JAVA": STATICALLY TYPED

GOOGLE BUILT IT ORIGINALLY FOR BROWSER

USEFUL CHANGES (ASYNC/AWAIT, PARAMETERS, …)

SYNTACTIC SUGAR FOR BUILDING FRONT-ENDS

MY EXPERIENCE

WITH FLUTTER

MY PROJECTS

FLUTTER PROTOTYPE SUMMER 2019

PROGRESSIVE WEB APP PROTOTYPE 
END OF 2019

FLUTTER PROJECT FOR IOS & ANDROID 
SINCE SEPTEMBER 2020

MY SUMMARY

60% FUN

35% WORK

5% FRUSTRATION

FLUTTER: THE GOOD

OPEN-SOURCE

SOURCE CODE & ISSUES PUBLIC AT GITHUB

INSPECT & DEBUG FLUTTER PLATFORM & PLUGINS

DART

SIMILAR ENOUGH TO JAVA TO BE FAMILIAR

LANGUAGE ENHANCEMENTS SAVE TIME

RELOAD & RESTART ROCK!

HOT RELOAD & HOT RESTART 
SAVE A TON OF TIME

PREVENT FLOW-BREAKING PAUSES

PLUGINS

GREAT PLUGIN PORTAL

ADD NATIVE FUNCTIONALITY (CAMERA, LOCATION, …)

PLUG HOLES IN FLUTTER (LAYOUT, WIDGETS, …)

MOST OPEN-SOURCE WITH PERMISSIVE LICENSE

FIXING PLUGINS

WHAT IF PLUGIN HAS BUGS OR NOT MAINTAINED?

1. FORK IT ON GITHUB

2. MAKE CHANGES IN FORK

3. USE FORK GIT URL IN FLUTTER APP BUILD FILE

FLUTTER TEAM LISTENS

FLUTTER RECENTLY OUTSOURCED DEVELOPMENT
OF SOME FIRST-PARTY PLUGINS TO KEEP UP

QUARTERLY SURVEY FOR DEVELOPERS

FLUTTER: THE BAD

WILL GOOGLE KILL
FLUTTER?

NOBODY KNOWS!

BAD: COMPETING EFFORTS AT GOOGLE - ANGULAR &
JETPACK COMPOSE

GOOD: IN NOV 2019, FLUTTER #3 FOR CONTRIBUTORS
AT GITHUB (13K) - POPULAR OUTSIDE OF GOOGLE

GOOD: FLUTTER PROVIDES UI IN PROJECT FUCHSIA

TEAM STRETCHED TOO THIN

WHY? KEEPING UP WITH MOBILE WHILE
BUILDING WEB & DESKTOP

ANNOYING ISSUES LINGER TOO LONG
(BUT NO SHOWSTOPPER, YET)

 
SEEMS LIKE A LOT OF OPEN ISSUES

"2X NATIVE" TOO HARD

APP THAT’S NATIVE ON IOS AND MATERIAL ON ANDROID

ALL THE PARTS ARE THERE (UI ELEMENTES, COLORS,
DARK MODE, TEXT SIZE CHANGES)…

…BUT TOO MUCH MANUAL ASSEMBLY REQUIRED!

WISHLIST SCORE

JAVA

DECLARATIVE

WEB APPS

MOBILE APPS

DESKTOP APPS

ALL NATIVE 
FEATURES

ONE CODE BASE

FAST BUILD, DE-

PLOY & DEBUG

SAFE

POPULAR COMPLETE

FASTFLU

-

FLU

REA

REA

REA

FLU

FLU

FLU

???

FLU

???

SCORE: NATIVE

FLUTTER WINS

REACT NATIVE SECOND

JAVAFX AND XAMARIN OUT

ADVICE: #2: NATIVE APPS

IF YOU ALREADY USE REACT NATIVE
OR FLUTTER, THEN KEEP IT

IF YOU DON’T, THEN GO FOR FLUTTER
FIRST, THEN REACT NATIVE

#3: DESKTOP

THE WAITING GAME

THERE’S NO GOOD, PRODUCTION-READY
CROSS-PLATFORM OPTION FOR DESKTOP

WEB HAS LESS RESTRICTIONS ON
DESKTOP THAN ON MOBILE

ADVICE: #3: DESKTOP

KEEP YOUR EXISTING WEB APPLICATION
FOR THE DESKTOP

IF YOU CAN USE MATERIAL DESIGN ON THE
DESKTOP AND YOU USE FLUTTER, THEN
EVALUATE FLUTTER FOR DESKTOP IN 2022

HOW SHOULD JAVA DEVELOPERS
BUILD FRONT-ENDS TODAY?

HOW CAN WE 
BUILD FRONT-ENDS TODAY?

SUMMARY

SCENARIOS

#1: JUST WEB: BUILD ONLY WEB APPLICATION, 
FROM SCRATCH

#2: NATIVE APPS: WEB APPLICATION EXISTS, BUILD
NATIVE IOS & ANDROID APPS FROM SCRATCH

#3: DESKTOP APPS: WEB APPLICATION EXISTS

ADVICE: #1: JUST WEB

IF YOU ALREADY USE REACT, ANGULAR,
OR VUE.JS, THEN KEEP IT

IF YOU DON’T, THEN GO FOR REACT
FIRST, THEN ANGULAR, THEN VUE.JS

ADVICE: #2: NATIVE APPS

IF YOU ALREADY USE REACT NATIVE OR
FLUTTER, THEN KEEP IT

IF YOU DON’T, THEN GO FOR FLUTTER
FIRST, THEN REACT NATIVE

ADVICE: #3: DESKTOP

KEEP YOUR EXISTING WEB APPLICATION
FOR THE DESKTOP

IF YOU CAN USE MATERIAL DESIGN ON THE
DESKTOP AND YOU USE FLUTTER, THEN
EVALUATE FLUTTER FOR DESKTOP IN 2022

LAST, BUT NOT LEAST:

YOU HAVE A 
NEW PRESIDENT!

BPF.LI/PAT

SLIDES & VIDEOS

GET STARTED

HOW TO BUILD 
JAVA APPS TODAY?

https://bpf.li/pat

