
Pick Technologies & 
Tools Faster by 

Coding with JHipster:

Talk page at:
https://bpf.li/cin

Please start with the problem description on the 
top left, then work your way down. Then move 
onto the solution description on the right and 
work your down from there.

We pick technologies & tools faster by 
coding with JHipster

What is JHipster?

What is it?

“Superstar developer”

Picks, configures, and updates
best technologies & tools

Writes all the “boring plumbing code”: 
Production grade, all layers

Open-source Java application generator
Full applications with front-end & back-end

No mobile apps

What does it do?

Generates complete application with user 
management, tests, continuous integration, 
deployment & monitoring

Create it by running wizard or import 
application configuration from JHipster 
Domain Language (JDL) file

Generates CRUD front-end & back-end for our 
entities

Import data model from JDL file

Re-import after JDL file changes

Updates application

Re-generates application & entities with new 
JHipster version

Overwriting your own code changes can be 
painful!

Receive security patches or framework 
updates (like Spring Boot)

Sometimes switches out library: yarn => npm, 
JavaScript test libraries, Webpack => Angular 
CLI

Live Demo
Generate application

JHipster picked and configured technologies & 
tools for us

Generated project

We picked architecture: monolith

We picked technologies & tools (like 
MongoDB or React)

Started to generate CRUD screens

Generate CRUD

Technologies & tools?

Monolith and microservices

Java and Kotlin

Maven and Gradle

Spring Boot, Micronaut (alpha), Quarkus 
(beta), NodeJS (alpha), Dot.NET (alpha)

SQL: H2, MySQL, MariaDB, PostgreSQL, 
Oracle, MS SQL Server

NoSQL: MongoDB, Cassandra, Couchbase, 
Neo4J (beta)

Caching: Ehcache, Caffeine, Hazelcast, 
Infinispan, Memcached, Redis

Imperative and reactive APIs (Spring 
WebFlux)

Authentication: JWT, OAuth 2.0, HTTP session

Optional: Elasticsearch, WebSockets, Apache 
Kafka messaging

SPA Framework: React, Angular, Vue

Java & SPA in one project

Testing: Junit, Cucumber, Jest, Protractor, 
Gatling

Continuous Integration: Jenkins,Travis, 
CircleCI, Github, Gitlab, Azure

Deployment: Docker, Kubernetes, OpenShift, 
AWS, Microsoft Azure, Google Cloud, Cloud 
Foundry, Heroku

Multi-language support

CRUD with JHipster Domain Language (JDL)

Text file

Describes data model through entities

Entities are JPA entities with typical types & 
constraints

Entity Relationships: 1:1, 1:m, m:1, m:n

Entity configuration: Service classes, DTOs, 
pagination

Can also configure application

What’s the risk?

6 Years of Steady Releases

No proprietary Layers

Best-Practice code, Production-Ready

JHipster Lead now at Microsoft

Diverse Contributors

Weekly downloads went from 3,000 in early 
2016 to 40.000 at the end of 2020

How does it help?

Makes picking technologies & tools easier

Analysis steps

Pick candidates

Does it work?

Does it scale?

Is it popular enough?

What’s the adoption risk?

JHipster picks

Code steps

How to build?

How to test?

How to run in Continuous Integration?

How to deploy in Docker?

How to monitor?

How to support?

How to debug in IDE?

How does it look with our data?

How productive can our team be?

How to deploy into cloud?

Use full application created by JHipster

Copy & paste from generated applications

Get inspired by cloud deployment options

Learn by running unknown code

We don’t need to know a technology in detail 
to debug it, deploy it or monitor it

JHipster creates running applications with 
unknown technologies, so answer most 
questions

Analysis steps

Pick candidates

Does it work?

Does it scale?

Is it popular enough?

Code steps

How to build?

How to test?

How to run in Continuous Integration?

How to deploy in Docker?

How to monitor?

How to debug in IDE?

How does it look with our data?

SQL vs NoSQL: Entities

SQL has more annotations and different data 
type for “id”

NoSQL not so different from SQL!

Angular vs React

Angular separates presentation code to 
template, uses standard HTML tags

React mixes business logic & presentation 
code to template, doesn’t use standard HTML 
tags

Live Demo
Review application

Started MongoDB through generated Docker 
Compose file

Application

Spring Boot & React Application in one Git 
project

Login & user administration

CRUD screens

Responsive layout for mobile

Monitoring & Administration

Multi-language support

Generate CI file

The dream comes true with JHipster

Develop complete application multiple times, 
once with each candidate

Monolith and microservices

Java and Kotlin

Maven and Gradle

Application Framework: Spring Boot, 
Micronaut, Quarkus

Relational DB and NoSQL

Imperativ and reactive APIs

SPA Framework: React, Angular, Vue

Use our data Generates CRUD front-end & back-end for our 
entities with JDL files

For free Open-source

Java developers today pick more 
technologies & tools more often

More technologies & tools?

Changes for Java developers from 10 years 
ago

Microservices & Container

Fullstack Developer

Shift Left

DevOps

Single Page Applications

Mobile Apps

Cloud

Before and after

Before: Either front-end or back-end 
developer inside app server with corporate DB

After: Code, test, run & support up to 4 
applications

Java back-end

Web front-end

iOS front-end

Android front-end

Questions for four applications

Which framework?

How to build?

How to test?

How to debug in IDE?

How to run in Continuous Integration?

How to deploy?

How to monitor?

How to support?

How does it look with our data?

How productive can our team be?

More often?

More releases

Java: From once every 3 years to every 6 
months

Typescript: every 2-3 months for the last four 
years

More alternatives

Application frameworks

5 years ago
JEE

Spring Boot

now

JEE

Spring Boot

MicroProfile

Micronaut

Quarkus

Helion

Java distributions

5 years ago
Oracle

IBM

now

Oracle

IBM

AdoptOpenJDK

Azul

Redhat

Alibaba

Bell Soft

Amazon

SAP

How to pick technology & tools?

Process

Analysis steps

Pick candidates

Does it work?

Does it scale?

Is it popular enough?

What’s the adoption risk?

Code steps

How to build?

How to test?

How to debug in IDE?

How to run in Continuous Integration?

How to deploy?

How to monitor?

How to support?

How does it look with our data?

How productive can our team be?

Pick for 4 applications

Java back-end

Web front-end

iOS front-end

Android front-end

How can we learn?

Materials

Articles

Books

Videos

Talks

Online training

On-Site training

Consultants

Run code

Typical Issues

Problems

Outdated

Incomplete

Expensive (consultant, training)

Hard

How to debug in IDE?

How to run in Continuous Integration?

How to deploy?

How does it look with our data?

How productive can I be?

Dream

Develop complete application multiple times, 
once with each candidate

Use our data

For free


