
KARSTEN SILZ, 4. NOVEMBER 2025

WIE KANN ICH JAVA
SCHNELLER STARTEN –

UND WANN LOHNT
SICH DAS?

WANN KANN ES
SICH LOHNEN, JAVA

SCHNELLER ZU STARTEN?

SERVERLESS
VIELE SERVER

SEHR HOHE VERFÜGBARKEIT

JAVA BY DESIGN:
MEHR ZEIT
MEHR CPU

MEHR SPEICHER

1. SPRING BOOT TUNING
2. CLASS DATA SHARING (CDS) &

OPENJDK PROJECT LEYDEN
3. OPENJDK PROJECT CRAC
4. GRAALVM NATIVE IMAGE

HTTPS://BPF.LI/ATC

FOLIEN, CODE,
ROI-BEISPIEL &

MEHR

https://bpf.li/atc
https://bpf.li/jf5
https://bpf.li/atc

WAS MACHT MICH ZUM
EXPERTEN?

2022: BETREUTE ARTIKEL-SERIE
ÜBER GRAALVM

SEITDEM: ARTIKEL & VORTRÄGE ZU
GRAALVM, LEYDEN & CRAC VERFASST

LOHNT SICH DAS?
WARUM JETZT?

WARUM LANGSAM?

WIE SCHNELLER?

LOHNT SICH DAS?

ENTWICKLER SOLLEN
BUSINESS VALUE

SCHAFFEN…

NEUE FEATURES
VERBESSERUNGEN

FEHLERBEHEBUNGEN

…NICHT KOSTENEIN-
SPARUNGEN!

FRAGEN SIE CHEF FÜR
JAVA-STARTUP-
OPTIMIERUNG

UM ERLAUBNIS!

SERVERLESS
VIELE SERVER

SEHR HOHE VERFÜGBARKEIT

SERVERLESS

ABRECHNUNG NACH
LAUFZEIT IN MS

SCHNELLERER STARTUP =
GERINGERE KOSTEN

AWS LAMBDA SNAPSTART:
LAMBDA MIT CRAC

VIELE SERVER

VIELE STANDBY-
INSTANZEN

FÜR LASTSPITZEN:

SCHNELLERER STARTUP =
WENIGER INSTANZEN =

WENIGER SERVIER

WENN ANWENDUNGEN
NICHT CPU-LIMITIERT:

WENIGER SPEICHER/APP =
MEHR INSTANZEN/SERVER =

WENIGER SERVER

SEHR HOHE
VERFÜGBARKEIT

DOWNTIME PRO JAHR &
VERFÜGBARKEITS-LEVEL

99.9%: KNAPP 9H
99.99%: GUT 52 MIN

99.999%: 5 MIN

WAS SIE SOWIESO MACHEN:
MEHRERE INSTANZEN,

ROLLING UPGRADES

SCHNELLER STARTUP:
VERSICHERUNG FÜR

GEPLANTE ODER
UNGEPLANTE AUSFÄLLE

BEWERTUNG
DER VARIANTEN

KOSTEN
EINMAL: BUILD & DEPLOYMENT,

ENTWICKLER-TRAINING
WIEDERKEHREND:

WARTUNG, UPGRADES

DEV EXPERIENCE
LOKALE ENTWICKLUNG

LANGSAMER, PRODUKTIONS-
TROUBLESHOOTING SCHLECHTER

TUNING CDS & LEYDEN CRAC GRAALVM
ZEIT: SERVERLESS,
STANDBY, VERFÜG-

BARKEIT
SPEICHER:

WENIGER SERVER
K0STEN

DEV EXPERIENCE

ROI: GRAALVM ÜBER 3 JAHRE
KOSTEN (PERSONAL & HARDWARE):

56.080 €
SPAREN: 6X EC2 T3.2XLARGE

(32 GB & 8 CPUS) FÜR 3 JAHRE

HTTPS://BPF.LI/ATC

ROI-
BEISPIEL

https://bpf.li/atc
https://bpf.li/atc
https://bpf.li/jf5

DAS LOHNT SICH
MANCHMAL!

LOHNT SICH DAS?
WARUM JETZT?

WARUM LANGSAM?

WIE SCHNELLER?

LOHNT SICH DAS?

WARUM JETZT?
WARUM LANGSAM?

WIE SCHNELLER?

WARUM JETZT?

ANWENDUNGEN IMMER
MEHR IM CONTAINER –

PROGRAMMIERSPRACHE EGAL:
JAVASCRIPT, C#,

PYTHON, GO, RUST, ...

DOCKERHUB: ÖFFENTLICHE &
KOSTENLOSE CONTAINER-IMAGES

= BILLIGE INFRASTRUKTUR:
DATENBANKEN, WEB-SERVER,

PROXIES, CACHES, ...

STANDARDISIERTE
KOMMUNIKATION VON

ANWENDUNGEN:
REST/GRAPHQL + JSON

CONTAINER + DOCKERHUB
+ REST/GRAPHQL + JSON =

NEUE KONKURRENZ

MONATLICHE ABRECHNUNG
FÜR CONTAINER AUF

SERVERN =
SICHTBARE SERVER-KOSTEN

JAVA BY DESIGN:
MEHR ZEIT
MEHR CPU

MEHR SPEICHER

JAVA BRAUCHT
MEHR SERVER-
RESSOURCEN

JAVA TEURER ALS
NEUE KONKURRENZ

DARUM JETZT!

LOHNT SICH DAS?

WARUM JETZT?
WARUM LANGSAM?

WIE SCHNELLER?

LOHNT SICH DAS?

WARUM JETZT?

WARUM LANGSAM?
WIE SCHNELLER?

WIESO LANGSAM?

JAVA-ANWENDUNGEN
SIND BYTECODE:

.CLASS-DATEIEN IN
JAR-ARCHIVEN AUF LINUX,

WINDOWS, MACOS…

…ABER WIRD
INTERPRETIERT –

LANGSAM!

JIT-COMPILER (JUST IN TIME):
BYTECODE ZU MASCHINENCODE

STANDARD JIT-COMPILER:
“HOTSPOT" SEIT 1999

HOTSPOT-TEILE

PROFILER

VERMERKT, WIE OFT
METHODEN & SCHLEIFEN
DURCHLAUFEN WERDEN

C1 COMPILER

SCHNELLE COMPILIERUNG => NICHT-
OPTIMIERTER MASCHINENCODE

MASCHINENCODE ENTHÄLT
PROFILING-CODE

C2 COMPILER

LANGSAME COMPILIERUNG =>
OPTIMIERTER MASCHINENCODE

METHOD INLINING, LOOP UNROLLING,
SCALAR REPLACEMENT, VECTORIZATION

OF ARITHMETIC LOOPS, ...

WIE STARTET JAVA?

BUILD TIME

RUNTIME

QUELL-
CODE

BYTE-
CODE

BYTE-
CODE

KLASSEN-
LISTE

INIT JDK &
FRAMEWORK

INIT
APP

MASCHINEN-
CODE

JAVA-COMPILER

JVM JIT-COMPILER

…

JAR IMAGE

FRAMEWORK

STARTUP TIME &
TIME TO PEAK

PERFORMANCE

BUILD TIME

RUNTIME

QUELL-
CODE

BYTE-
CODE

KLASSEN-
LISTE

INIT JDK &
FRAMEWORK

INIT
APP

JAVA-COMPILER

JVM

STARTUP
TIME

BYTE-
CODE

MASCHINEN-
CODE

JIT-COMPILER

…

JAR IMAGE

FRAMEWORK

BUILD TIME

RUNTIME

QUELL-
CODE

BYTE-
CODE

KLASSEN-
LISTE

INIT JDK &
FRAMEWORK

INIT
APP

JAVA-COMPILER

JVM

TIME TO PEAK
PERFORMANCE

BYTE-
CODE

MASCHINEN-
CODE

JIT-COMPILER

…

JAR IMAGE

FRAMEWORK

JAVA BY DESIGN:
MEHR ZEIT
MEHR CPU

MEHR SPEICHER

BUILD TIME

RUNTIME

QUELL-
CODE

BYTE-
CODE

KLASSEN-
LISTE

INIT JDK &
FRAMEWORK

INIT
APP

JAVA-COMPILER

JVM

LÄUFT JEDES MAL,
GLEICHES RESULTAT:

VIELE JAVA-
OBJEKTE

BYTE-
CODE

MASCHINEN-
CODE

JIT-COMPILER

…

JAR IMAGE

FRAMEWORK

MEHR ZEIT FÜR
STARTUP

MEHR CPU

BUILD TIME

RUNTIME

QUELL-
CODE

BYTE-
CODE

KLASSEN-
LISTE

INIT JDK &
FRAMEWORK

INIT
APP

JAVA-COMPILER

JVM

PROFILING
C1 COMPILER

PROFILING
C2 COMPILER

BYTE-
CODE

MASCHINEN-
CODE

JIT-COMPILER

…

JAR IMAGE

FRAMEWORK

MEHR ZEIT FÜR
TIME TO PEAK

MEHR CPU

BUILD TIME

RUNTIME

QUELL-
CODE

BYTE-
CODE

KLASSEN-
LISTE

INIT JDK &
FRAMEWORK

INIT
APP

JAVA-COMPILER

JVM

PROFILER +
2 COMPILER

IN APP!

BYTE-
CODE

MASCHINEN-
CODE

JIT-COMPILER

…

JAR IMAGE

FRAMEWORK

MEHR SPEICHER

JAVA BY DESIGN:
MEHR ZEIT
MEHR CPU

MEHR SPEICHER

BY DESIGN?

"SIMPLE, OBJECT-ORIENTED, DISTRIBUTED,
INTERPRETED, ROBUST, SECURE, ARCHITECTURE-
NEUTRAL, PORTABLE, HIGH-PERFORMANCE,
MULTITHREADED DYNAMIC LANGUAGE"

ORIGINALE JAVA-BESCHREIBUNG

https://www.infoq.com/news/2025/05/java-at-30

BY DESIGN!

JAVA BY DESIGN:
MEHR ZEIT
MEHR CPU

MEHR SPEICHER

DARUM LANGSAM!

LOHNT SICH DAS?

WARUM JETZT?

WARUM LANGSAM?
WIE SCHNELLER?

LOHNT SICH DAS?

WARUM JETZT?

WARUM LANGSAM?

WIE SCHNELLER?

WIE SCHNELLER?

BUILD TIME

RUNTIME

QUELL-
CODE

BYTE-
CODE

KLASSEN-
LISTE

INIT JDK &
FRAMEWORK

INIT
APP

JAVA-COMPILER

JVM
BYTE-
CODE

MASCHINEN-
CODE

JIT-COMPILER

…

ARBEIT ZUM BUILD
VERLAGERNJAR IMAGE

FRAMEWORK

BUILD TIME

RUNTIME

QUELL-
CODE

BYTE-
CODE

KLASSEN-
LISTE

INIT JDK &
FRAMEWORK

INIT
APP

JAVA-COMPILER

JVM
BYTE-
CODE

MASCHINEN-
CODE

JIT-COMPILER

…

JAR IMAGE

FRAMEWORK
ERGEBNISSE

CACHEN

ARBEIT ZUM BUILD
VERLAGERN

ERGEBNISSE CACHEN

BEISPIEL: SPRING PETCLINIC
WEB-ANWENDUNG MIT

THYMELEAF, SPRING DATA &
POSTGRESQL

BENCHMARK
AWS EC2 2 GB RAM, 2 CPUS

LOKALER POSTGRES-SERVER
SPRING BOOT 4.0 RC1

JAVA 25

MESSEN STARTUP TIME
DANN 5 X DIE GLEICHEN

11 SEITEN AUFRUFEN

BENCHMARK MIT DIESEN
PARAMETERN:

-XMS256M -XMX768M  
-XX"+USEG1GC 

--SPRING.PROFILES. 
ACTIVE=POSTGRES

3 WARMUP-LÄUFE,
7 BENCHMARK-LÄUFE,

MITTELWERT VON 5 LÄUFEN

ERGEBNISSE GELTEN NUR
FÜR PETCLINIC IN MEINER

UMGEBUNG!

SCRIPTS SIND IN MEINEM
PETCLINIC-FORK – MESSEN
SIE FÜR IHRE ANWENDUNG!

./COMPILE-AND-RUN.SH [BASELINE | TUNING | CDS |
 LEYDEN | CRAC | GRAALVM]

HTTPS://BPF.LI/ATC

CODE

https://bpf.li/atc
https://bpf.li/atc
https://bpf.li/jf5

0:
PERFORMANCE BASELINE

SPRING BOOT 3
JDK 17

./GRADLEW CLEAN BOOTJAR
 
JAVA -JAR BUILD/LIBS/MY-APP-1.4.JAR

0 s

2 s

4 s

6 s

8 s

10 s

12 s

14 s

Baseline

13,8

0 MB

100 MB

200 MB

300 MB

400 MB

500 MB

Baseline

445

0

5

10

15

20

25

30

35

Baseline

9,2

34,4

GARBAGE
COLLECTIONS:

STARTUP
BENCHMARK

APP JAR: 67 MB

1:
SPRING BOOT TUNING

VOM SPRING-TEAM
VERLAGERT SCHRITTE ZUM BUILD

REDUZIERT STARTUP TIME
SPRING BOOT 3, JDK 17

SPRING-BOOT-INITIALISIERUNG
TEILWEISE IM BUILD

SPRING AOT ENTFERNT NICHT
BENÖTIGTEN CODE & KONFIGURATION

BOOT-JAR ENTPACKT

./GRADLEW CLEAN BOOTJAR && \ 
 JAVA -DJARMODE=TOOLS \ 
 -JAR BUILD/LIBS/MY-APP-1.4.JAR EXTRACT  
JAVA -DSPRING.AOT.ENABLED=TRUE \ 
 -JAR MY-APP-1.4/MY-APP-1.4.JAR

0 s

2 s

4 s

6 s

8 s

10 s

12 s

14 s

Baseline Tuning

9,3
13,8

0 MB

100 MB

200 MB

300 MB

400 MB

500 MB

Baseline Tuning

416445

0

5

10

15

20

25

30

35

Baseline Tuning
2

9,2

28
34,4

APP JAR: 1 MB
LIB JARS: 118 MB

PROBLEME?

NISCHEN-BUGS FÜR
SPRING AOT IN

SPRING BOOT 3.5

TUNING CDS & LEYDEN CRAC GRAALVM
ZEIT: SERVERLESS,
STANDBY, VERFÜG-

BARKEIT
SPEICHER:

WENIGER SERVER
K0STEN

DEV EXPERIENCE

2:
CLASS DATA SHARING

(CDS) & LEYDEN

CDS IN JAVA EINGEBAUT, LEYDEN OPEN-
JDK-PROJEKT VON ORACLES JAVA-TEAM

CACHET ERGEBNISSE
REDUZIERT STARTUP TIME & TIME TO PEAK

CDS: JDK 17, LEYDEN: JDK 24

BRAUCHT ANWENDUNGS-TRAININGSLAUF
SCHREIBT BEI INITIALISIERUNG

ANFALLENDE DATEN IN CACHE-DATEI
ANWENDUNG LÄDT

CACHE-DATEI IN PRODUKTION

CDS:
CACHE-DATEI

MY-APP.JSA

./GRADLEW CLEAN BOOTJAR && \ 
 JAVA -DJARMODE=TOOLS \ 
 -JAR BUILD/LIBS/MY-APP-1.4.JAR EXTRACT
 
JAVA -DSPRING.AOT.ENABLED=TRUE \ 
 -XX:ARCHIVECLASSESATEXIT=MY-APP.JSA 
 -JAR MY-APP-1.4/MY-APP-1.4.JAR 
JAVA -DSPRING.AOT.ENABLED=TRUE \ 
 -XX:SHAREDARCHIVEFILE=MY-APP.JSA 
 -JAR MY-APP-1.4/MY-APP-1.4.JAR

PROJECT LEYDEN:
AOT CACHE

MY-APP.AOT

./GRADLEW CLEAN BOOTJAR && \ 
 JAVA -DJARMODE=TOOLS \ 
 -JAR BUILD/LIBS/MY-APP-1.4.JAR EXTRACT
JAVA -DSPRING.AOT.ENABLED=TRUE \ 
 -XX:AOTCACHEOUTPUT=MY-APP.AOT 
 -JAR MY-APP-1.4/MY-APP-1.4.JAR 
JAVA -DSPRING.AOT.ENABLED=TRUE \ 
 -XX:AOTCACHE=MY-APP.AOT 
 -JAR MY-APP-1.4/MY-APP-1.4.JAR

WELCHE DATEN
IM CACHE?

RUNTIME

KLASSEN-
LISTE

INIT JDK &
FRAMEWORK

INIT
APP

JVM
BYTE-
CODE

MASCHINEN-
CODE

JIT-COMPILER

…

CDS (JDK 17):
NICHT VERLINKT

LEYDEN (JDK 24):
VERLINKT

LEYDEN (JDK 25):
PROFILING-DATEN

LEYDEN (JDK ??):
MASCHINEN-CODE

0 s

2 s

4 s

6 s

8 s

10 s

12 s

14 s

Baseline Tuning Tuning + CDS Tuning + Leyden

4,55,7
9,3

13,8

0 MB

100 MB

200 MB

300 MB

400 MB

500 MB

Baseline Tuning Tuning + CDS Tuning + Leyden

361403416445

0

5

10

15

20

25

30

35

Baseline Tuning Tuning + CDS Tuning + Leyden
1,622

9,2
2,84

28
34,4

CDS CACHE: 102 MB
LEYDEN CACHE: 132 MB

PROBLEME?

PRODUKTIONSNAHER TRAININGSLAUF
CACHE-DATEI WÄHREND DES BUILDS & IN

CONTAINER-IMAGE (CLOUD NATIVE
BUILDPACKS IN SPRING BOOT)…

…ODER NACH BUILD & IN PRODUKTION
IN CONTAINER GEMAPPT

CACHE-DATEI IN JEDEM
BUILD & FÜR JEDES

BETRIEBSSYSTEM BAUEN,
WEIL SONST UNGÜLTIG

LEYDEN CACHE-BERECHNUNG
BRAUCHT SPEICHER

LEYDEN FUNKTIONIERT NICHT MIT
USER-DEFINED CLASS LOADER

(Z.B. QUARKUS)

LEYDEN WIRD
BESSER WERDERN

TUNING CDS & LEYDEN CRAC GRAALVM
ZEIT: SERVERLESS,
STANDBY, VERFÜG-

BARKEIT
SPEICHER:

WENIGER SERVER
K0STEN

DEV EXPERIENCE

3:
PROJECT CRAC

“COORDINATED RESTORE AT CHECKPOINT”
OPEN-JDK-PROJEKT, INITIAL VON AZUL

CACHET ERGEBNISSE
REDUZIERT STARTUP TIME & TIME TO PEAK

JDK 17 (TEST: 24)

LEYDEN VS. CRAC

RUNTIME

KLASSEN-
LISTE

INIT JDK &
FRAMEWORK

INIT
APP

JVM
BYTE-
CODE

MASCHINEN-
CODE

JIT-COMPILER

…

LEYDEN (JDK 24):
VERLINKT

LEYDEN (JDK 25):
PROFILING-DATEN

LEYDEN (JDK ??):
MASCHINEN-CODE

RUNTIME

KLASSEN-
LISTE

INIT JDK &
FRAMEWORK

INIT
APP

JVM
BYTE-
CODE

MASCHINEN-
CODE

JIT-COMPILER

…

KOMPLETTEN APPLIKATION-SPEICHER
ALS MEMORY-SNAPSHOT SPEICHERN

& SPÄTER LADEN

TRAININGSLAUF:
⏸

NUTZER/APPLIKATION LÖSEN
CHECKPOINT IM TRAININGSLAUF AUS:

ERZEUGT SNAPSHOT ALS MEMORY DUMP
VON ALLEN DATEN DER ANWENDUNG,

BIBLIOTHEKEN, JVM & HOTSPOT

PRODUKTION:
▶

./GRADLEW CLEAN BOOTJAR -PCRAC=TRUE
 
JAVA -XX:CRACENGINE=WARP \ 
 -XX:CRACCHECKPOINTTO=MY-APP-CRAC 
 -JAR BUILD/LIBS/MY-APP-1.4.JAR
JCMD [PID] JDK.CHECKPOINT 
JAVA -XX:CRACRESTOREFROM=MY-APP-CRAC

0 s

2 s

4 s

6 s

8 s

10 s

12 s

14 s

Baseline Tuning Tuning + CDS Tuning + Leyden CRaC
0,085

4,55,7
9,3

13,8

0 MB

100 MB

200 MB

300 MB

400 MB

500 MB

Baseline Tuning Tuning + CDS Tuning + Leyden CRaC

384361403416445

0

5

10

15

20

25

30

35

Baseline Tuning Tuning + CDS Tuning + Leyden CRaC
01,622

9,2
02,84

28
34,4

SNAPSHOT: 229 MB

PROBLEME?

"CRAC TRIES TO MAKE THINGS RUN FASTER
POTENTIALLY AT THE EXPENSE OF CORRECT-
NESS, AND I DON’T LIKE THAT TRADE-OFF."

BRIAN GOETZ, JAVA LANGUAGE
ARCHITECT BEI ORACLE

https://www.youtube.com/watch?v=O1Oz2-AXKKM&t=3250s

VOR SNAPSHOT-SPEICHERN ALLE
DATEIEN & PORTS SCHLIEßEN...
...UND NACH SNAPSHOT-LADEN

WIEDER ÖFFNEN

CRAC BRAUCHT SUPPORT VON JDK,
FRAMEWORK, BIBLIOTHEKEN & ANWENDUNG

JDK: AZUL, BELLSOFT LIBERICA,
CANONICAL/UBUNTU

FRAMEWORKS: SPRING BOOT 3.2+,
QUARKUS 2.10.0, MICRONAUT 3.7, HELIDON 4.2

CRAC FUNKTIONIERT NUR IN LINUX
– NOOP-IMPLEMENTIERUNG IN

WINDOWS & MACOS
BRAUCHT CRAC JAVA-BIBLIOTHEK

SICHERHEITSRISIKO SNAPSHOT:
PASSWÖRTER, SECRETS,

BYTECODE & MASCHINENCODE
IM KLARTEXT

VERSCHLÜSSELUNG FÜR
SNAPSHOTS GEPLANT

TUNING CDS & LEYDEN CRAC GRAALVM
ZEIT: SERVERLESS,
STANDBY, VERFÜG-

BARKEIT
SPEICHER:

WENIGER SERVER
K0STEN

DEV EXPERIENCE

4:
GRAALVM NATIVE IMAGE

PROJEKT VON ORACLE LABS
VERLAGERT SCHRITTE ZUM BUILD

REDUZIERT STARTUP TIME & TIME TO PEAK
SPRING BOOT 3,

GRAALVM JDK 17 (HIER: 24)

"JAVA MINUS
JIT-COMPILER"

ORACLE LABS !=
ORACLE JAVA-TEAM

AHEAD-OF-TIME-COMPILER (AOT)
“NATIVE IMAGE” BAUT AUSFÜHRBARE

PROGRAMME FÜR LINUX,
WINDOWS & MACOS

BENÖTIGT SPRING AOT

NATIVE IMAGE ENTFERNT
BEIM BUILD ALLE NICHT

BENÖTIGTEN KLASSEN &
RESSOURCEN

PROFILE-GUIDED OPTIMIZATION
(PGO): TRAININGSLAUF MIT

INSTRUMENTIERTER ANWENDUNG,
DIE PROFILING-DATEN FÜR ZWEITEN

COMPILIERUNGS-LAUF SAMMELT

MEHR SICHERHEIT: KEIN BÖSARTIGER
BYTECODE LADBAR ZUR LAUFZEIT,

SICHERHEITSLÜCKEN IN UNBENUTZTEM
CODE ENTFERNT

ANWENDUNGEN KLEINER ALS JAR + JRE

ZUR LAUFZEIT IMMER NOCH
JVM ("SUBSTRATE VM")

FÜR THREADS & GARBAGE
COLLECTION

GRAALVM BRAUCHT SUPPORT VON
FRAMEWORK, BIBLIOTHEKEN & ANWENDUNG

FRAMEWORKS: SPRING BOOT 3.0+,
QUARKUS, MICRONAUT, HELIDON
BIBLIOTHEKEN: ÖFFENTLICHES
KONFIGURATIONS-REPOSITORY

GRAALVM JDK = OPENJDK + NATIVE IMAGE
+ GRAAL JIT-COMPILER

(HOTSPOT-ERSATZ)
SEPARATER DOWNLOAD, ABER RELEASES

SYNCHRON MIT OPENJDK

./GRADLEW NATIVECOMPILE --PGO-INSTRUMENT
 
./BUILD/NATIVE/NATIVECOMPILE/MY-APP-
INSTRUMENTED
 
./GRADLEW NATIVECOMPILE
./BUILD/NATIVE/NATIVECOMPILE/MY-APP

0 s

2 s

4 s

6 s

8 s

10 s

12 s

14 s

Baseline Tuning Tuning + CDS Tuning + Leyden CRaC GraalVM
0,2790,085

4,55,7
9,3

13,8

0 MB

100 MB

200 MB

300 MB

400 MB

500 MB

Baseline Tuning Tuning + CDS Tuning + Leyden CRaC GraalVM

208

384361403416445

0

5

10

15

20

25

30

35

Baseline Tuning Tuning + CDS Tuning + Leyden CRaC GraalVM
001,622

9,2
002,84

28
34,4

LINUX APP: 172 MB
NATIVE IMAGE:

9:43 MIN & 5:34 MIN
MIT 32 GB RAM & 8 CPUS

PROBLEME?

EINIGE JAVA-FEATURES
UNMÖGLICH

ANDERE FUNKTIONIEREN
NUR TEILWEISE

REFLECTION & EXPLIZITES KLASSEN-
LADEN BRAUCHEN KONFIGURATION

GRAALVM KANN KONFIGURATION
AUTOMATISCH DURCH "MITHÖREN

BEI JIT-JAVA" ERZEUGEN

NERVIG

LANGE BUILD-ZEITEN & VIEL SPEICHER
EINE ANWENDUNG PRO BETRIEBSSYSTEM
DEBUGGEN AUF MAC/WINDOWS EXTREM

ZÄH, WEIL ANWENDUNG IN LINUX-
CONTAINER LÄUFT

TUNING CDS & LEYDEN CRAC GRAALVM
ZEIT: SERVERLESS,
STANDBY, VERFÜG-

BARKEIT
SPEICHER:

WENIGER SERVER
K0STEN

DEV EXPERIENCE

ZEIT SPAREN: CRAC &
GRAALVM

SPEICHER SPAREN: GRAALVM

SO SCHNELLER!

LOHNT SICH DAS?

WARUM JETZT?

WARUM LANGSAM?

WIE SCHNELLER?

LOHNT SICH DAS?

WARUM JETZT?

WARUM LANGSAM?

WIE SCHNELLER?

ZUSAMMENFASSUNG

WANN KANN ES
SICH LOHNEN, JAVA

SCHNELLER ZU STARTEN?

SERVERLESS
VIELE SERVER

SEHR HOHE VERFÜGBARKEIT

JAVA BY DESIGN:
MEHR ZEIT
MEHR CPU

MEHR SPEICHER

1. SPRING BOOT TUNING
2. CLASS DATA SHARING (CDS) &

OPENJDK PROJECT LEYDEN
3. OPENJDK PROJECT CRAC
4. GRAALVM NATIVE IMAGE

MEIN VORTRAG HÖRT
NICHT AUF, WENN ICH

AUFHÖRE VORZUTRAGEN!

HTTPS://BPF.LI/ATC

FOLIEN, CODE,
ROI-BEISPIEL &

MEHR

https://bpf.li/atc
https://bpf.li/atc
https://bpf.li/jf5

